首页 > 代码库 > 算法题目

算法题目

1。对于数组A[0,1,2,3,4,...,k],求得0<=i < j < k,且使得A[j] - A[i]为最大值。

    最简单也最容易想到的搜索两遍,即可得到答案。i的位置从起始至倒数第二个位置,j的位置从末尾元素至i后一个位置,保存记录最大的差值即可。

    不过最简单的方法复杂度为n的平方,其实令有一个时间复杂度很低的方法,及从前至后遍历,添加一个保存当前访问元素之前的最小的元素,最大值必定需要减去已访问过元素的最小值才能够获得,这样时间复杂度降至n。

    

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {<br>public:
//i<j max(a[j]-a[i])
    int arrayMaxGap(vector<int> &array) {
        if(array.size() == 0 || array.size() == 1)
            return -1;
        if(array.size() == 2) {
            return array[1] - array[0];
        }
        int maxres,premin;
        maxres = array[1] - array[0];
        premin = array[0];
        for(int i = 1;i < array.size();i++) {
            if (array[i] - premin > maxres)
                maxres = array[i] - premin;
            if (array[i] < premin)
                premin = array[i];
        }
        return maxres;
    }
}

  

2。对于递增的数组A[0,1,2,3,4,...,k],数组B[0,1,2,3,4,...k‘],对于0<=i<k,0<=j<k‘,对于计算出的A[i]+B[j],求其前k小个元素。

    对于这个题目最先想到的思路,构造一个集合计算出所有的A[i]+B[j],然后求取前k小个元素就比较简单了,但是如果k相对于构造出的集合比较小,这样就比较浪费空间了。

    对于任意一个元素A[i]+B[j],我们可以指导A[i+1]+B[j]和A[i]+B[j+1]是其接下来可确定的最近邻的两个大于其的元素,首先A[0]+B[0],接下来就是A[1]+B[0],A[0]+B[1]之中小的元素为第二小的元素,接下来继续扩展第二小的元素得到A[2]+B[0],A[1]+B[1],或者A[0]+B[2],A[1]+B[1],所以如果用指针的话这样无法保存,求取最小的结合不断的膨胀,所以这里考虑利用最小堆每次得到多个元素中最小的元素。 

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
//class for minKsum
struct Point {
    int x;
    int y;
    int sum;
};
bool operator<(Point a,Point b){
    return a.sum > b.sum;
}
class Solution {
public:
//array A,arrayB, obtain the minest k a[i]+b[j]. that a[0]+b[0] is the minest
    vector<int> minKsum(vector<int> i_A,vector<int> i_B,int k) {
        vector<int> res;
        priority_queue<Point> priorityq;
        if(i_A.size() == 0&&i_B.size() == 0) {
            return res;
        }
        if(i_A.size() == 0) {
            if (i_B.size() > k)
            {
                return res;
            }
            return vector<int>(i_B.begin(),i_B.begin()+k);
        }
        if(i_B.size() == 0) {
            if(i_A.size() > k)
            {
                return res;
            }
            return vector<int>(i_A.begin(),i_A.begin()+k);
        }
        Point first;
        first.x = 0;
        first.y = 0;
        first.sum = i_A[0] + i_B[0];
        priorityq.push(first);
        while (!priorityq.empty()&&res.size() != k)
        {
            Point tmpoutput = priorityq.top();
            priorityq.pop();
            res.push_back(tmpoutput.sum);
            if(tmpoutput.y == 0) {
                if (tmpoutput.x + 1 < i_A.size())
                {
                    Point tmp;
                    tmp.x = tmpoutput.x + 1;
                    tmp.y = tmpoutput.y;
                    tmp.sum = i_A[tmpoutput.x + 1] + i_B[tmpoutput.y];
                    priorityq.push(tmp);
                }
                if (tmpoutput.y + 1 < i_B.size()) {
                    Point tmp;
                    tmp.x = tmpoutput.x;
                    tmp.y = tmpoutput.y + 1;
                    tmp.sum = i_A[tmpoutput.x] + i_B[tmpoutput.y + 1];
                    priorityq.push(tmp);
                }
            }
            else {
                if(tmpoutput.y + 1 < i_B.size()) {
                    Point tmp;
                    tmp.x = tmpoutput.x;
                    tmp.y = tmpoutput.y + 1;
                    tmp.sum = i_A[tmpoutput.x] + i_B[tmpoutput.y + 1];
                    priorityq.push(tmp);
                }
            }
        }
        return res;
    }
}

  

3。实现带有重复元素的二分查找,如果查找的元素重复,返回重复元素的起始位置。

    类似二分查找,但是结束条件有些不同,结束条件为当前节点=目标元素并且当前节点为起始节点或者前一个节点不等与目标元素。

    

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {<br>public:
    int binarySearch(vector<int> &array, int target) {
        if(array.size() == 1) {
            if (array[0] == target)
                return 0;
            else
                return -1;
        }
        int start = 0,end = array.size() - 1,mid;
        while(start <= end) {
            mid = (start + end)/2;
            if(array[mid] == target && (mid == 0 || array[mid-1] != target)) {
                return mid;
            }
            else if(target <= array[mid]) {
                end = mid - 1;
            }
            else {
                start = mid + 1;
            }
        }
        return -1;
    }
}

  

4。对于链表表示的完全二叉树,给出根节点的指针,统计其节点的数量。

    完全遍历需要O(n)时间的复杂度。但是这样没有完全利用完全二叉树的特性。

    计算节点数量转换为计算最后一层节点数量,计算最后一层节点数量可以这样计算,左子树,右子树,如果深度相同,计算右子树最后一层数量+满的左子树。如果深度不同,计算左子树的最后一层节点数量,这样问题规模可以直接减半。

    

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include <algorithm>
#include <time.h>
#include <iostream>
using namespace std;
struct TreeNode {
    TreeNode *left;
    TreeNode *right;
    int value;
    TreeNode(int v) {value = http://www.mamicode.com/v;}
};
class Solution {
public:
    int recurseTree(TreeNode *root) {
        if (root == NULL)
            return 0;
        int tdepth = depth(root);
        return (int)pow((double)2,tdepth-1) - 1 + recuseNode(root,tdepth);
    }
    //递归统计完全二叉树的最后一层节点个数
    int recuseNode(TreeNode *root,int depth) {
        if(root == NULL)
            return 0;
        //最后一层才进行统计,depth == 1
        if(root->left == NULL && root->right == NULL && depth == 1)
            return 1;
        return recuseNode(root->left,depth-1)+recuseNode(root->right,depth-1);
    }
    int dc(TreeNode *root) {
        if(root == NULL)
            return 0;
        int treedepth = depth(root);
        if(treedepth == 1)
            return 1;
        else
            return (int)pow((double)2,treedepth-1) - 1 + devide_conquer(root);
    }
    //分治统计完全二叉树的最后一层节点个数
    int devide_conquer(TreeNode *root) {
        int tdepth = depth(root);
        //如果只有两层,直接可以得到最后一层节点个数
        if(tdepth == 2) {
            if(root->right == NULL)
                return 1;
            return 2;
        }
        int leftdepth = depth(root->left);
        int rightdepth = depth(root->right);
        //right side
        if (leftdepth == rightdepth) {
            return (int)pow((double)2,tdepth-1-1) + devide_conquer(root->right);
        }
        //left side
        else if(leftdepth > rightdepth) {
            return devide_conquer(root->left);
        }
        else {
            //error
        }
    }
    //计算深度
    int depth(TreeNode *root) {
        int depth = 0;
        TreeNode *cur = root;
        while(cur != NULL) {
            cur = cur->left;
            depth++;
        }
        return depth;
    }
};
int main(int argc,char **argv) {
    TreeNode *_1root = new TreeNode(1);
    _1root->left = NULL;
    _1root->right = NULL;
 
    TreeNode *_2root1 = new TreeNode(1);
    TreeNode *_2root2 = new TreeNode(2);
    TreeNode *_2root3 = new TreeNode(3);
    TreeNode *_2root4 = new TreeNode(4);
    TreeNode *_2root5 = new TreeNode(5);
    TreeNode *_2root6 = new TreeNode(6);
    TreeNode *_2root7 = new TreeNode(7);
    TreeNode *_2root8 = new TreeNode(8);
    TreeNode *_2root9 = new TreeNode(9);
    TreeNode *_2root10 = new TreeNode(10);
    TreeNode *_2root11 = new TreeNode(11);
    TreeNode *_2root12 = new TreeNode(12);
 
    _2root1->left = _2root2;
    _2root1->right = _2root3;
 
    _2root2->left = _2root4;
    _2root2->right = _2root5;
 
    _2root3->left = _2root6;
    _2root3->right = _2root7;
 
    _2root4->left = _2root8;
    _2root4->right = _2root9;
 
    _2root5->left = _2root10;
    _2root5->right = _2root11;
 
    _2root6->left = _2root12;
    _2root6->right = NULL;
 
    _2root7->left = NULL;
    _2root7->right = NULL;
 
    _2root8->left = NULL;
    _2root8->right = NULL;
 
    _2root9->left = NULL;
    _2root9->right = NULL;
 
    _2root10->left = NULL;
    _2root10->right = NULL;
 
    _2root11->left = NULL;
    _2root11->right = NULL;
 
    _2root12->left = NULL;
    _2root12->right = NULL;
 
    Solution s;
    int s11,s12,s21,s22;
 
    clock_t start,finish;
    start = clock();
    for(int i = 0;i < 1000000;i++)
        s11 = s.dc(_1root);
    finish = clock();
    double t11 = double(finish - start);
    start = clock();
    for(int i = 0;i < 1000000;i++)
        s12 = s.recurseTree(_1root);
    finish = clock();
    double t12 = double(finish - start);
 
    start = clock();
    for(int i = 0;i < 1000000;i++)
        s21 = s.dc(_2root1);
    finish = clock();
    double t21 = double(finish - start);
    start = clock();
    for(int i = 0;i < 1000000;i++)
        s22 = s.recurseTree(_2root1);
    finish = clock();
    double t22 = double(finish - start);
 
    cout<<"s11:"<<s11<<"time:"<<t11<<"ms"<<endl;
    cout<<"s12:"<<s12<<"time:"<<t12<<"ms"<<endl;
    cout<<"s21:"<<s21<<"time:"<<t21<<"ms"<<endl;
    cout<<"s22:"<<s22<<"time:"<<t22<<"ms"<<endl;
}

  

5。给出一串数字,判断是否为有效二叉查找树的后序遍历序列(及是否能够通过这串后序遍历序列构造出二叉查找树)。

    最先想到的思路,将当前序列排序,有序的假设为中序遍历序列,这样可以类似还原BST。利用后序的序列不断的分割中序。有序的序列是否能够在后序中为一串连续的空间,如果连续即可构造出BST。这种方法的时间复杂度可以从O(n2)优化至O(nlgn),利用hash表。

    有一个更好的思路,不利用中序,直接利用后序,首先利用最后的根节点,利用二分查找nlgn得到分割点,当前元素小于根,下一个元素大于根,考虑一些边界情况。

    然后,根节点之前的为左子树,其上界为根节点;根节点之后的为右子树,其下界为根节点,递归下去,递归至一个元素,如果符合上下界的条件,即可形成BST。

    

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {<br>public:
//postorder sequece and checkout if it can be construct BST
    bool validBST(vector<int> &postorder) {
        return validBST_recurse(postorder, 0, postorder.size() - 1, INT_MIN, INT_MAX);
    }
    bool validBST_recurse(vector<int> &postorder, int start, int end, int min, int max) {
        if(end < start) {
            return true;
        }
        if(end == start) {
            return postorder[end] > min && postorder[end] < max;
        }
        int partition = binaryPartition(postorder,start,end);
        bool left = validBST_recurse(postorder, start, partition, min, postorder[end]);
        bool right = validBST_recurse(postorder, partition+1, end-1, postorder[end], max);
        return left&&right;
    }
    //partition to two part, postorder[p] < postorder[end] && portorder[p+1] > postorder[end]
    int binaryPartition(vector<int> &postorder, int start, int end) {
        int target = postorder[end];
        int mid;
        end = end - 1;
        if(start == end)
            return start;
        while(start < end) {
            mid = (start + end)/2;
            if(postorder[mid] < target && (mid == end || postorder[mid+1] > target)) {
                return mid;
            }
            else if(postorder[mid] > target && (mid == start || postorder[mid-1] < target)) {
                return mid-1;
            }
            else if(postorder[mid] < target) {
                start = mid + 1;
            }
            else {
                end = mid - 1;
            }
        }
        return -1;
    }
}