首页 > 代码库 > 算法6-3:解决哈希冲突之线性探针
算法6-3:解决哈希冲突之线性探针
线性探针是另外一种解决哈希冲突的办法。这种办法的基本思想就是当遇到哈希冲突时,寻找下一个空位,直到找到空位为止。
示例
先插入一个值S,如下图。
插入其他的一些值,这些值的哈系没有冲突,得到下图的结果。
再插入一个值H,由于H与A的哈系冲突,因此需要寻找一个空的位置。
找到了空位
插入
代码
public class LinearProbeST<Key, Value> { private static final int M = 100; private Key[] keys = (Key[])new Object[M]; private Value[] values = (Value[])new Object[M]; public LinearProbeST() { } public Value get(Key key) { int hash = hash(key); for(int i=0; i < M; i++) { int index = (hash + i) % M; Key key2 = keys[index]; // 找不到该键 if(key2 == null) return null; // 找到了该键 if(key.equals(key2)) { return values[index]; } } return null; } public void put(Key key, Value value) { int hash = hash(key); for(int i=0; i < M; i++) { int index = (hash+i) % M; Key key2 = keys[index]; // 找到了空位 if(key2 == null) { keys[index] = key; values[index] = value; return; } // 找到了已经存在的值 if(key.equals(key2)) { values[index] = value; return; } } } private int hash(Key key) { return (key.hashCode() & 0x7fffffff) % M; } }
性能
随着数据量的增加,由于冲突的哈希值增加因此速度会越来越慢。在冲突很少的情况下,每个操作的复杂度近似为1。在冲突非常多的情况下,每个操作的复杂度可达到N。所以一般取M=N/2,这样性能最佳,又不浪费空间。
Knuth停车问题
有一个固定大小的停车场,每辆车都会在随机的位置i停下,如果停车位i已经被占用了,那么寻找停车位i+1、i+2等。
线性探针算法其实就是Knuth停车问题。http://arxiv.org/abs/math/0502220
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。