首页 > 代码库 > UVA 11404 Palindromic Subsequence

UVA 11404 Palindromic Subsequence

Palindromic Subsequence

Time Limit: 3000ms
Memory Limit: 131072KB
This problem will be judged on UVA. Original ID: 11404
64-bit integer IO format: %lld      Java class name: Main
 

A Subsequence is a sequence obtained by deleting zero or more characters in a string. A Palindrome is a string which when read from left to right, reads same as when read from right to left. Given a string, find the longest palindromic subsequence. If there are many answers to it, print the one that comes lexicographically earliest.

 


Constraints

 

  • Maximum length of string is 1000.
  • Each string has characters `a‘ to `z‘ only.

 

Input 

Input consists of several strings, each in a separate line. Input is terminated by EOF.

 

Output 

For each line in the input, print the output in a single line.

 

Sample Input 

 

aabbaabbcomputerabzlasamhita

 

Sample Output 

 

aabbaacabaaha

解题:求最长的且字典序最小的回文子序列。把原串逆转,然后与原串求LCS。LCS的的前半部分一定要求的回文序列的前半部分,但是后半部分可能不是。

 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <climits> 7 #include <vector> 8 #include <queue> 9 #include <cstdlib>10 #include <string>11 #include <set>12 #include <stack>13 #define LL long long14 #define pii pair<int,int>15 #define INF 0x3f3f3f3f16 using namespace std;17 const int maxn = 1010;18 struct DP{19     int len;20     string str;21 };22 DP dp[maxn][maxn];23 char sa[maxn],sb[maxn];24 int main() {25     while(gets(sa)){26         int len  = strlen(sa);27         strcpy(sb,sa);28         reverse(sb,sb+len);29         for(int i = 0; i <= len; ++i){30             dp[0][i].len = 0;31             dp[0][i].str = "";32         }33         for(int i = 1; i <= len; ++i){34             for(int j = 1; j <= len; ++j){35                 if(sa[i-1] == sb[j-1]){36                     dp[i][j].len = dp[i-1][j-1].len+1;37                     dp[i][j].str = dp[i-1][j-1].str + sa[i-1];38                 }else if(dp[i-1][j].len > dp[i][j-1].len){39                     dp[i][j].len = dp[i-1][j].len;40                     dp[i][j].str = dp[i-1][j].str;41                 }else if(dp[i-1][j].len < dp[i][j-1].len){42                     dp[i][j].len = dp[i][j-1].len;43                     dp[i][j].str = dp[i][j-1].str;44                 }else{45                     dp[i][j].len = dp[i-1][j].len;46                     dp[i][j].str = min(dp[i-1][j].str,dp[i][j-1].str);47                 }48             }49         }50         string ans = dp[len][len].str;51         if(dp[len][len].len&1){52             for(int i = 0; i < dp[len][len].len>>1; ++i)53                 putchar(ans[i]);54             for(int i = dp[len][len].len>>1; i >= 0; --i)55                 putchar(ans[i]);56             putchar(\n);57         }else{58             for(int i = 0; i+1 < dp[len][len].len>>1; ++i)59                 putchar(ans[i]);60             for(int i = dp[len][len].len>>1; i >= 0; --i)61                 putchar(ans[i]);62             putchar(\n);63         }64     }65     return 0;66 }
View Code

 

UVA 11404 Palindromic Subsequence