首页 > 代码库 > UVA - 10405 Longest Common Subsequence
UVA - 10405 Longest Common Subsequence
#include<iostream> #include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<algorithm> using namespace std; int dp[1010][1010]; int main() { int i,j,n,m; string a,b; while(getline(cin,a)) { getline(cin,b); memset(dp,0,sizeof(dp)); n=a.length(); m=b.length(); for(i=1;i<=n;i++) for(j=1;j<=m;j++) if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1]); cout<<dp[n][m]<<endl; } return 0; }
UVA - 10405
Longest Common Subsequence
Time Limit:3000MS | Memory Limit:Unknown | 64bit IO Format:%lld & %llu |
Description
Problem C: Longest Common Subsequence
Sequence 1:
Sequence 2:
Given two sequences of characters, print the length of the longest common subsequence of both sequences. For example, the longest common subsequence of the following two sequences:
abcdgh aedfhris adh of length 3.
Input consists of pairs of lines. The first line of a pair contains the first string and the second line contains the second string. Each string is on a separate line and consists of at most 1,000 characters
For each subsequent pair of input lines, output a line containing one integer number which satisfies the criteria stated above.
Sample input
a1b2c3d4e zz1yy2xx3ww4vv abcdgh aedfhr abcdefghijklmnopqrstuvwxyz a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0 abcdefghijklmnzyxwvutsrqpo opqrstuvwxyzabcdefghijklmn
Output for the sample input
4 3 26 14
Problem Setter: Piotr Rudnicki
Source
Root :: AOAPC I: Beginning Algorithm Contests (Rujia Liu) :: Volume 5. Dynamic Programming
Root :: Competitive Programming: Increasing the Lower Bound of Programming Contests (Steven & Felix Halim) :: Chapter 6. String Processing ::String Processing with DP
Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: String Processing :: String Processing with Dynamic Programming ::Classic
Root :: Prominent Problemsetters :: Piotr Rudnicki
Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: String Processing ::String Processing with Dynamic Programming - Standard
Root :: Competitive Programming: Increasing the Lower Bound of Programming Contests (Steven & Felix Halim) :: Chapter 6. String Processing ::String Processing with DP
Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: String Processing :: String Processing with Dynamic Programming ::Classic
Root :: Prominent Problemsetters :: Piotr Rudnicki
Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: String Processing ::String Processing with Dynamic Programming - Standard
UVA - 10405 Longest Common Subsequence
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。