首页 > 代码库 > HUST 1017 - Exact cover (Dancing Links 模板题)
HUST 1017 - Exact cover (Dancing Links 模板题)
1017 - Exact cover
时间限制:15秒 内存限制:128兆
自定评测 5584 次提交 2975 次通过
- 题目描述
- There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
- 输入
- There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
- 输出
- First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
- 样例输入
6 7 3 1 4 7 2 1 4 3 4 5 7 3 3 5 6 4 2 3 6 7 2 2 7
- 样例输出
3 2 4 6
题目链接:http://acm.hust.edu.cn/problem/show/1017
精确覆盖入门题。
Dancing Links 就是一种加快搜索速度的方法,采用四向链表。
1 /* *********************************************** 2 Author :kuangbin 3 Created Time :2014/5/25 22:55:25 4 File Name :E:\2014ACM\专题学习\DLX\HUST1017.cpp 5 ************************************************ */ 6 7 #include <stdio.h> 8 #include <string.h> 9 #include <iostream> 10 #include <algorithm> 11 #include <vector> 12 #include <queue> 13 #include <set> 14 #include <map> 15 #include <string> 16 #include <math.h> 17 #include <stdlib.h> 18 #include <time.h> 19 using namespace std; 20 const int maxnode = 100010; 21 const int MaxM = 1010; 22 const int MaxN = 1010; 23 struct DLX 24 { 25 int n,m,size; 26 int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode]; 27 int H[MaxN], S[MaxM]; 28 int ansd, ans[MaxN]; 29 void init(int _n,int _m) 30 { 31 n = _n; 32 m = _m; 33 for(int i = 0;i <= m;i++) 34 { 35 S[i] = 0; 36 U[i] = D[i] = i; 37 L[i] = i-1; 38 R[i] = i+1; 39 } 40 R[m] = 0; L[0] = m; 41 size = m; 42 for(int i = 1;i <= n;i++) 43 H[i] = -1; 44 } 45 void Link(int r,int c) 46 { 47 ++S[Col[++size]=c]; 48 Row[size] = r; 49 D[size] = D[c]; 50 U[D[c]] = size; 51 U[size] = c; 52 D[c] = size; 53 if(H[r] < 0)H[r] = L[size] = R[size] = size; 54 else 55 { 56 R[size] = R[H[r]]; 57 L[R[H[r]]] = size; 58 L[size] = H[r]; 59 R[H[r]] = size; 60 } 61 } 62 void remove(int c) 63 { 64 L[R[c]] = L[c]; R[L[c]] = R[c]; 65 for(int i = D[c];i != c;i = D[i]) 66 for(int j = R[i];j != i;j = R[j]) 67 { 68 U[D[j]] = U[j]; 69 D[U[j]] = D[j]; 70 --S[Col[j]]; 71 } 72 } 73 void resume(int c) 74 { 75 for(int i = U[c];i != c;i = U[i]) 76 for(int j = L[i];j != i;j = L[j]) 77 ++S[Col[U[D[j]]=D[U[j]]=j]]; 78 L[R[c]] = R[L[c]] = c; 79 } 80 //d为递归深度 81 bool Dance(int d) 82 { 83 if(R[0] == 0) 84 { 85 ansd = d; 86 return true; 87 } 88 int c = R[0]; 89 for(int i = R[0];i != 0;i = R[i]) 90 if(S[i] < S[c]) 91 c = i; 92 remove(c); 93 for(int i = D[c];i != c;i = D[i]) 94 { 95 ans[d] = Row[i]; 96 for(int j = R[i]; j != i;j = R[j])remove(Col[j]); 97 if(Dance(d+1))return true; 98 for(int j = L[i]; j != i;j = L[j])resume(Col[j]); 99 } 100 resume(c); 101 return false; 102 } 103 }; 104 105 DLX g; 106 int main() 107 { 108 //freopen("in.txt","r",stdin); 109 //freopen("out.txt","w",stdout); 110 int n,m; 111 while(scanf("%d%d",&n,&m) == 2) 112 { 113 g.init(n,m); 114 for(int i = 1;i <= n;i++) 115 { 116 int num,j; 117 scanf("%d",&num); 118 while(num--) 119 { 120 scanf("%d",&j); 121 g.Link(i,j); 122 } 123 } 124 if(!g.Dance(0))printf("NO\n"); 125 else 126 { 127 printf("%d",g.ansd); 128 for(int i = 0;i < g.ansd;i++) 129 printf(" %d",g.ans[i]); 130 printf("\n"); 131 } 132 } 133 return 0; 134 }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。