首页 > 代码库 > 2016 ACM/ICPC Asia Regional Qingdao Online 1005 Balanced Game
2016 ACM/ICPC Asia Regional Qingdao Online 1005 Balanced Game
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5882
Problem Description
Rock-paper-scissors is a zero-sum hand game usually played between two people, in which each player simultaneously forms one of three shapes with an outstretched hand. These shapes are "rock", "paper", and "scissors". The game has only three possible outcomes other than a tie: a player who decides to play rock will beat another player who has chosen scissors ("rock crushes scissors") but will lose to one who has played paper ("paper covers rock"); a play of paper will lose to a play of scissors ("scissors cut paper"). If both players choose the same shape, the game is tied and is usually immediately replayed to break the tie.
Recently, there is a upgraded edition of this game: rock-paper-scissors-Spock-lizard, in which there are totally five shapes. The rule is simple: scissors cuts paper; paper covers rock; rock crushes lizard; lizard poisons Spock; Spock smashes scissors; scissors decapitates lizard; lizard eats paper; paper disproves Spock; Spock vaporizes rock; and as it always has, rock crushes scissors.
Both rock-paper-scissors and rock-paper-scissors-Spock-lizard are balanced games. Because there does not exist a strategy which is better than another. In other words, if one chooses shapes randomly, the possibility he or she wins is exactly 50% no matter how the other one plays (if there is a tie, repeat this game until someone wins). Given an integer N, representing the count of shapes in a game. You need to find out if there exist a rule to make this game balanced.
Recently, there is a upgraded edition of this game: rock-paper-scissors-Spock-lizard, in which there are totally five shapes. The rule is simple: scissors cuts paper; paper covers rock; rock crushes lizard; lizard poisons Spock; Spock smashes scissors; scissors decapitates lizard; lizard eats paper; paper disproves Spock; Spock vaporizes rock; and as it always has, rock crushes scissors.
Both rock-paper-scissors and rock-paper-scissors-Spock-lizard are balanced games. Because there does not exist a strategy which is better than another. In other words, if one chooses shapes randomly, the possibility he or she wins is exactly 50% no matter how the other one plays (if there is a tie, repeat this game until someone wins). Given an integer N, representing the count of shapes in a game. You need to find out if there exist a rule to make this game balanced.
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.
For each test case, there is only one line with an integer N (2≤N≤1000), as described above.
Here is the sample explanation.
In the first case, donate two shapes as A and B. There are only two kind of rules: A defeats B, or B defeats A. Obviously, in both situation, one shapes is better than another. Consequently, this game is not balanced.
In the second case, donate two shapes as A, B and C. If A defeats B, B defeats C, and C defeats A, this game is balanced. This is also the same as rock-paper-scissors.
In the third case, it is easy to set a rule according to that of rock-paper-scissors-Spock-lizard.
For each test case, there is only one line with an integer N (2≤N≤1000), as described above.
Here is the sample explanation.
In the first case, donate two shapes as A and B. There are only two kind of rules: A defeats B, or B defeats A. Obviously, in both situation, one shapes is better than another. Consequently, this game is not balanced.
In the second case, donate two shapes as A, B and C. If A defeats B, B defeats C, and C defeats A, this game is balanced. This is also the same as rock-paper-scissors.
In the third case, it is easy to set a rule according to that of rock-paper-scissors-Spock-lizard.
Output
For each test cases, output "Balanced" if there exist a rule to make the game balanced, otherwise output "Bad".
Sample Input
3
2
3
5
Sample Output
Bad
Balanced
Balanced
Hint:
题意:
问 nnn
个手势的石头剪刀布游戏是否能保证出每种手势胜率都一样。
题解:
当每种手势的攻防个数完全相等才能保证平衡,所以容易得出 nnn
是奇数时游戏平衡,否则不平衡。签到题。
代码:
#include <cstdio>int main(){ int t; scanf("%d",&t); while(t--) { int n; scanf("%d",&n); if(n%2==1) printf("Balanced\n"); else printf("Bad\n"); }}
2016 ACM/ICPC Asia Regional Qingdao Online 1005 Balanced Game
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。