首页 > 代码库 > 递归与尾递归总结

递归与尾递归总结

 

TAIL_RECURSIVE_QUICKSORT(A,p,r)while p<r    //Partiton and sort left subarray    q = PARTITION(A,p,r)    TAIL_RECURSIVE_QUICKSORT(A,p,q-1)    p = q+1 

转自。http://www.cnblogs.com/Anker/archive/2013/03/04/2943498.html

1、递归

  关于递归的概念,我们都不陌生。简单的来说递归就是一个函数直接或间接地调用自身,是为直接或间接递归。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。用递归需要注意以下两点:(1) 递归就是在过程或函数里调用自身。(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

递归一般用于解决三类问题:
   (1)数据的定义是按递归定义的。(Fibonacci函数,n的阶乘)
   (2)问题解法按递归实现。(回溯)
   (3)数据的结构形式是按递归定义的。(二叉树的遍历,图的搜索)
递归的缺点:
  递归解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储,因此递归次数过多容易造成栈溢出。
  用线性递归实现Fibonacci函数,程序如下所示:
1 int FibonacciRecursive(int n)2 {3     if( n < 2)4         return n;5     return (FibonacciRecursive(n-1)+FibonacciRecursive(n-2));6 }

递归写的代码非常容易懂,完全是根据函数的条件进行选择计算机步骤。例如现在要计算n=5时的值,递归调用过程如下图所示:

2、尾递归

  顾名思义,尾递归就是从最后开始计算, 每递归一次就算出相应的结果, 也就是说, 函数调用出现在调用者函数的尾部, 因为是尾部, 所以根本没有必要去保存任何局部变量. 直接让被调用的函数返回时越过调用者, 返回到调用者的调用者去。尾递归就是把当前的运算结果(或路径)放在参数里传给下层函数,深层函数所面对的不是越来越简单的问题,而是越来越复杂的问题,因为参数里带有前面若干步的运算路径。

  尾递归是极其重要的,不用尾递归,函数的堆栈耗用难以估量,需要保存很多中间函数的堆栈。比如f(n, sum) = f(n-1) + value(n) + sum; 会保存n个函数调用堆栈,而使用尾递归f(n, sum) = f(n-1, sum+value(n)); 这样则只保留后一个函数堆栈即可,之前的可优化删去。

  采用尾递归实现Fibonacci函数,程序如下所示:

1 int FibonacciTailRecursive(int n,int ret1,int ret2)2 {3    if(n==0)4       return ret1; 5     return FibonacciTailRecursive(n-1,ret2,ret1+ret2);6 }

例如现在要计算n=5时的值,尾递归调用过程如下图所示:

从图可以看出,为递归不需要向上返回了,但是需要引入而外的两个空间来保持当前的结果。

  为了更好的理解尾递归的应用,写个程序进行练习。采用直接递归和尾递归的方法求解单链表的长度,C语言实现程序如下所示:

 1 #include <stdio.h> 2 #include <stdlib.h> 3  4 typedef struct node 5 { 6   int data; 7   struct node* next; 8 }node,*linklist; 9 10 void InitLinklist(linklist* head)11 {12      if(*head != NULL)13         free(*head);14      *head = (node*)malloc(sizeof(node));15      (*head)->next = NULL;16 }17 18 void InsertNode(linklist* head,int d)19 {20      node* newNode = (node*)malloc(sizeof(node));21      newNode->data =http://www.mamicode.com/ d;22      newNode->next = (*head)->next;23      (*head)->next = newNode;24 }25 26 //直接递归求链表的长度 27 int GetLengthRecursive(linklist head)28 {29     if(head->next == NULL)30        return 0;31     return (GetLengthRecursive(head->next) + 1);32 }33 //采用尾递归求链表的长度,借助变量acc保存当前链表的长度,不断的累加 34 int GetLengthTailRecursive(linklist head,int *acc)35 {36     if(head->next == NULL)37       return *acc;38     *acc = *acc+1;39     return GetLengthTailRecursive(head->next,acc);40 }41 42 void PrintLinklist(linklist head)43 {44      node* pnode = head->next;45      while(pnode)46      {47         printf("%d->",pnode->data);48         pnode = pnode->next;49      }50      printf("->NULL\n");51 }52 53 int main()54 {55     linklist head = NULL;56     int len = 0;57     InitLinklist(&head);58     InsertNode(&head,10);59     InsertNode(&head,21);60     InsertNode(&head,14);61     InsertNode(&head,19);62     InsertNode(&head,132);63     InsertNode(&head,192);64     PrintLinklist(head);65     printf("The length of linklist is: %d\n",GetLengthRecursive(head));66     GetLengthTailRecursive(head,&len);67     printf("The length of linklist is: %d\n",len);68     system("pause");69 }


程序测试结果如下图所示:

递归与尾递归总结