首页 > 代码库 > LIS(最长递增子序列)和LCS(最长公共子序列)的总结

LIS(最长递增子序列)和LCS(最长公共子序列)的总结

LIS(最长递增子序列)和LCS(最长公共子序列)的总结

最长公共子序列(LCS):O(n^2)

两个for循环让两个字符串按位的匹配:i in range(1, len1) j in range(1, len2)
s1[i - 1] == s2[j - 1], dp[i][j] = dp[i - 1][j -1] + 1;
s1[i - 1] != s2[j - 1], dp[i][j] = max (dp[i - 1][j], dp[i][j - 1]);
初始化:dp[i][0] = dp[0][j] = 0;

伪代码:
    dp[maxn1][maxn2];
    s1[maxn1],s2[maxn2];
    p[maxn1][maxn2][2];
    //init
    for i in range(0, len1):
        dp[i][0] = 0;
    else:;
    for i in range(0, len2):
        dp[0][i] = 0;
    else:;

    for i in range(1, len1):
        for j in range(1, len2):
            if s1[i] == s2[j]:
                dp[i][j] = dp[i - 1][j - 1] + 1;
                p[i][j][0] = i - 1;
                p[i][j][1] = j - 1;
            else:
                if dp[i - 1][j] > dp[i][j - 1]:
                    dp[i][j] = dp[i - 1][j];
                    p[i][j][0] = i - 1;
                    p[i][j][1] = j;
                else:
                    dp[i][j] = dp[i][j - 1];
                    p[i][j][0] = i;
                    p[i][j][1] = j - 1;
        else:;
    else:;
    return dp[len1][len2];
    //path 非递归
    function print_path(len1, len2):
        if (dp[len1][len2] == 0)
            return;
        printf_path(p[len1][len2][0], p[len1][len2][1]);
        if s1[len1] == s2[len2]:
            printf:s1[len1];
    end function;

题目:UVA - 531CompromiseUVA - 10066The Twin Towers UVA - 10192Vacation
uva10405 - Longest Common Subsequence

最长递增子序列(LIS):O(n^2)

从左到右的求前i长度的序列的最长递增子序列的长度,状态转移方程:
dp[i] = Max(dp[j] + 1);i in range(1, len); j in range(1, i - 1);

伪代码
    s[maxn],dp[maxn];

    for i in range(1, len):
        dp[i] = 1;

    for i in range(2, len):
        for j range(1, i - 1):
            if s[i] > s[j]:
                dp[i] = Max(dp[i], dp[j] + 1);
        else:;
    else:;
    return dp[len];
    //path递归
    function print_path(max_len, len):
        if max_len == 0:return;

        for i in range(len, 1):
            if dp[i] == max_len:
                print_path(max_len - 1, i - 1);
                printf:s[i];
    end function;

题目: UVA - 10599Robots(II)

最长递增子序列O(n * logn)

还是从左往右的求前i长度的序列的最长递增子序列长度,但是再确定dp[j]最大值的时候还要用一层循环来查找,这样比较低效.如果把前面的i长度序列出现的最长递增子序列储存起来,那么查找的时候用二分就可以做到O(logn)的复杂度。
用一个LIS数组来储蓄前i序列的最长递增子序列,查找第i个数字的时候,如果num[i] > LIS[top], 那么LIS[++top] = num[i]; dp[i] = top;如果num[i] == LIS[top],那么dp[i] = top; 如果num[i] < LIS[top], 那么二分查找到某个等于或者大于num[i]的最接近的值的位置(第k个),dp[i] = k - 1; LIS[k] = num[i];

题目:UVA - 10534Wavio Sequence

伪代码
    dp[maxn], LIS[maxn], s[maxn];
    top = 0;
    LIS[top++] = s[1];

    for i in range(2, len):
        if s[i] > LIS[top]:
            LIS[++top] = s[i];
            dp[i] = top + 1;
        else if s[i] == LIS[top]:
            dp[i] = top + 1;
        else:
            k = lower_bound(LIS.begin(), LIS.end(), s[i]) - LIS.beign();//algorithm头文件
            LIS[k] = s[i];
            dp[i] = k + 1;
    else:;
    return dp[maxn];
最长公共子序列O(n * logn)

要求串本身不会出现相同的数字或是字母。通过对第一个字符串进行映射(递增的顺序),然后第二个字符串依照上面的第一个字符串等价映射,这样就把问题从LCS转化成LIS。例如:
串1: 2 4 3 5 6
映射:1 2 3 4 5
串2: 3 2 6 8 10
等价映射:3 1 5 0 0

题目:uva10635Prince and Princess


LIS(最长递增子序列)和LCS(最长公共子序列)的总结