首页 > 代码库 > HDU4911:Inversion
HDU4911:Inversion
Problem Description
bobo has a sequence a1,a2,…,an. He is allowed to swap two adjacent numbers for no more than k times.
Find the minimum number of inversions after his swaps.
Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and ai>aj.
Find the minimum number of inversions after his swaps.
Note: The number of inversions is the number of pair (i,j) where 1≤i<j≤n and ai>aj.
Input
The input consists of several tests. For each tests:
The first line contains 2 integers n,k (1≤n≤105,0≤k≤109). The second line contains n integers a1,a2,…,an (0≤ai≤109).
The first line contains 2 integers n,k (1≤n≤105,0≤k≤109). The second line contains n integers a1,a2,…,an (0≤ai≤109).
Output
For each tests:
A single integer denotes the minimum number of inversions.
A single integer denotes the minimum number of inversions.
Sample Input
3 1 2 2 1 3 0 2 2 1
Sample Output
1 2依据逆序数的定理如果逆序数大于0,那么必然存在1<=i<n使得i和i+1交换后逆序数减1如果原逆序数为cnt。这种话,我们就能够得到答案是max(cnt-k,0)求逆序数能够用归并的方法#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int a[100005]; int left[100005], right[100005]; __int64 cnt; void merge(int* a, int p, int q, int r) { int i, j, k, n1, n2; n1 = q-p+1; n2 = r-q; for (i=0; i<n1; i++) { left[i] = a[p+i]; } for (i=0; i<n2; i++) { right[i] = a[q+i+1]; } left[n1] = right[n2] = 0x7fffffff; i = j = 0; for (k=p; k<=r; k++) { if (left[i] <= right[j]) { a[k] = left[i]; i++; } else { a[k] = right[j]; j++; cnt += n1-i; /**此步骤是在归并排序法中加的一句,用来计数求逆序数的数目**/ } } return; } void mergesort(int* a, int p, int r) { int q; if (p < r) { q = (p+r)/2; mergesort(a, p, q); mergesort(a, q+1, r); merge(a, p, q, r); } return ; } int main() { int n,k,i,j; while(~scanf("%d%d",&n,&k)) { cnt = 0; for(i = 0;i<n;i++) scanf("%d",&a[i]); mergesort(a,0,n-1); printf("%I64d\n",max(cnt-k,(__int64)0)); } return 0; }
HDU4911:Inversion
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。