首页 > 代码库 > codeforces Round #259(div2) B解题报告
codeforces Round #259(div2) B解题报告
One day, Twilight Sparkle is interested in how to sort a sequence of integers a1,?a2,?...,?an in non-decreasing order. Being a young unicorn, the only operation she can perform is a unit shift. That is, she can move the last element of the sequence to its beginning:
Help Twilight Sparkle to calculate: what is the minimum number of operations that she needs to sort the sequence?
The first line contains an integer n (2?≤?n?≤?105). The second line contains n integer numbers a1,?a2,?...,?an (1?≤?ai?≤?105).
If it‘s impossible to sort the sequence output -1. Otherwise output the minimum number of operations Twilight Sparkle needs to sort it.
2 2 1
1
3 1 3 2
-1
2 1 2
0
题目大意:
给出N个数字,可以每一次将最后一个数字移动到最前面,要求最终状态是一个单调非递减的序列,求最少需要花多少次操作。如若无法达到目标则输出“-1"。
解法:
也是一道很easy的编程基础题,找出两队单调非递减序列,分别为1~x 和 x+1~y,判断这两队是否覆盖整串数字,且a[n] <= a[1]。
更简单的一种做法就是,将a[1]~a[n]复制一遍,拓展到a[1]~a[2*n],然后在1 ~ 2*n里面找,是否有一串单调不递减的个数为n的序列。
代码:
#include <cstdio> #define N_max 123456 int n, x, y, cnt; int a[N_max]; void init() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); } void solve() { for (int i = 1; i <= n; i++) if (a[i] > a[i+1]) { x = i; break; } if (x == n) y = n; else for (int i = x+1; i <= n; i++) if (a[i] > a[i+1]) { y = i; break; } if (x == n) printf("0\n"); else if (y == n && a[y] <= a[1]) printf("%d\n", y-x); else printf("-1\n"); } int main() { init(); solve(); }
codeforces Round #259(div2) B解题报告