首页 > 代码库 > C算法与数据结构-线性表的应用,多项式求和---ShinePans
C算法与数据结构-线性表的应用,多项式求和---ShinePans
/*---上机作业作业,二项式加法---*/ /*---By 潘尚 ---*/ /*---日期: 2014-5-8 . ---*/ /*---题目:---*/ //如果有两个稀疏多项式A和B,设计算法完毕下列任务 //1.输入并建立多项式A和B; //2.求两个多项式的和多项式C; //3.求两个多项式的积多项式D; //输出4个多项式A,B,C,D; #include <stdio.h> #include <stdlib.h> #include <string.h> typedef struct Node{ float A; //系数 int m; //指数 struct Node *next; }LNode, *LinkList; //链表类型,若採用嵌套结构体怎样用->以指针的方式訪问 void Initialize(LNode *plist); LinkList PolyAdd(LNode *plist1, LNode *plist2); int Cmp(int a, int b); void Append(LNode *pa, LNode *pb); int ListIsEmpty(const LinkList *plist); void EmptyTheList(LNode *plist); void PrintList(LNode *plist); void PolySort(LNode *plist); int GetLength(LNode *plist); void PolyMerge(LNode *plist); float HornorEvaluate(LNode *plist, float x); LinkList PolyMultiply(LNode *plist1, LNode *plist2); int GetMaxExpn(LNode *plist); /** *主函数 */ int main(void) { LNode *p1 = (LNode*)malloc(sizeof(LNode)); LNode *p2 = (LNode*)malloc(sizeof(LNode)); LNode *result1 = (LNode*)malloc(sizeof(LNode)); LNode *result2 = (LNode*)malloc(sizeof(LNode)); Initialize(p1); Initialize(p2); PolySort(p1); //多项式排序 PolySort(p2); printf("\np1 = "); PrintList(p1); printf("\np1(value) = %f", HornorEvaluate(p1, 2)); printf("\np2 = "); PrintList(p2); printf("\np2(value) = %f", HornorEvaluate(p2, 2)); result1 = PolyAdd(p1, p2); result2 = PolyMultiply(p1, p2); //printf("\n%d",GetLength(p1)); //PolyMerge(p1); //合并同类项 //UnitePoly(p1); //合并同类项 //EmptyTheList(p1); printf("\np1 + p2 = "); PrintList(result1); printf("\np1 * p2 = "); PrintList(result2); getchar(); getchar(); return 0; } /** *Operation: 初始化一个多项式 *Precondition: *Postcondition: */ void Initialize(LNode *plist) { int i, n; float c; int e; LNode *prev = NULL, *current = NULL; plist->next = NULL; prev = plist; printf("\nPlease input the length of the polynomial: "); scanf_s("%d", &n); plist->A = 0; plist->m = n; //链表长度 printf("Please input the coefficient and the exponent of each term: \n"); for (i = 1; i <= n; i++) { current = (LNode*)malloc(sizeof(LNode)); scanf_s("%2f%d", &c, &e); current->A = c; current->m = e; prev->next = current; prev = current; /*plist->next = current; plist = current;*/ } current->next = NULL; PolySort(plist); } /** *Operation: 将两个多项式相加 *Precondition: *Postcondition: *Notes: 能够採用先将两多项式合并(拼接)后再合并同类项来实现相加 */ LinkList PolyAdd(LNode *plist1, LNode *plist2) { LNode *pa, *pb; LNode *result = (LNode*)malloc(sizeof(LNode)); int a, b; result->next = NULL; LNode *r = result; pa = plist1->next; pb = plist2->next; while (pa && pb) { LNode *current = (LNode*)malloc(sizeof(LNode)); a = pa->A; b = pb->m; switch (Cmp(a, b)){ case -1: current->A= pa->m; current->A = pa->m; pa = pa->next; break; case 0: current->A = pa->A + pb->A; current->m = pa->m; pa = pa->next; pb = pb->next; break; case 1: current->A = pb->A; current->m = pb->m; pb = pb->next; break; } r->next = current; r = r->next; //结果多项式指针后移 current->next = NULL; } if (!pa || !pb) { if (!pa) Append(r, pb); if (!pb) Append(r, pa); } //free(current); return result; } /** *比較两整数大小 */ int Cmp(int a, int b) { if (a>b) return 1; if (a<b) return -1; else return 0; } /** *链接pb剩余节点到pa上 */ void Append(LNode *pa, LNode *pb) { LNode *r = pa; LNode *p = pb; while (p) { LNode *current = (LNode*)malloc(sizeof(LNode)); current->A= p->A; current->m = p->m; p = p->next; r->next = current; //SEGIVE current->next = NULL; } } /** *Operation: 推断多项式是否为空 */ int ListIsEmpty(const LinkList *plist) { if (*plist == NULL) return 1; else return 0; } /** *Operation: 清空一个多项式链表 *Precondition:plist指向一个多项式列表 *Postcondition:该列表被清空并释放 */ void EmptyTheList(LNode *plist) { LNode *psave; while (plist != NULL) { psave = plist->next; free(plist); plist = psave; } } /** *Operation: 输出一个多项式链表 */ void PrintList(LNode *plist) { LNode *p = plist; p = p->next; //跳过头指针 while (p != NULL) { if (p->next != NULL) printf("%0.1f*x^%d + ", p->A, p->m); else printf("%0.1f*x^%d;", p->A, p->m); p = p->next; } printf("\n"); } /** *Operation: 将输入的无序多项式链表排序 *Precondition:无序多项式链表 *Postcondition:递增顺序的多项式链表 */ void PolySort(LNode *plist) { LNode *pa = plist->next, *pb = pa->next; LNode *temp = (LNode*)malloc(sizeof(LNode)); int length = GetLength(plist); int i; for (i = 0; i<length; i++) { while (pb) { if (pa->m > pb->m) { temp->A = pa->A; temp->m = pa->m; pa->A = pb->A; pa->m = pb->m; pb->A = temp->A; pb->m = temp->m; } pa = pa->next; pb = pa->next; } pa = plist->next; pb = pa->next; //这两句用于将pa,pb又一次指向头节点 } } /** *Operation: 将输入的多项式中的指数同样项合并(合并同类项) *Precondition:有序多项式链表 *Postcondition:无同类项的有序多项式链表 */ void PolyMerge(LNode *plist) { LNode *prev, *current; int l = GetLength(plist); int i; prev = plist->next; current = prev->next; for (i = 0; i<l; i++) { while (current) { if (prev->m == current->m) { prev->A += current->A; // why " prev->coef += current->coef " is wrong? prev->next = current->next; free(current); current = prev->next; continue; //! without this sentence ,the function will be wrong and report an problem } prev = prev->next; current = prev->next; } if (current) { prev = plist->next; current = prev->next; } } } /* //合并同类项 void UnitePoly(LNode *h)//合并同类项 { LNode *p1,*p2,*q1,*q2,*temp; q1=h; p1=q1->next; while(p1!=NULL) { p2=p1->next; q2=p1; while(p2!=NULL) { if(p1->expn==p2->expn) { p1->coef=p1->coef+p2->coef; if(p1->coef==0) { temp=p2; q2->next=p2->next; free(temp); temp=p1; q1->next=p1->next; p1=q1; free(temp); break; } else { temp=p2; q2->next=p2->next; p2=p2->next; free(temp); } } else { q2=p2; p2=p2->next; } } q1=p1; p1=p1->next; } } */ /** *求链表长度 */ int GetLength(LNode *plist) { LNode *p = plist; int lenght = 0; p = p->next; //跳过节点 while (p) { lenght++; p = p->next; } return lenght; //return lenght-1; //若没跳过头结点则返回值减一 } /** *Operation: 求两多项式乘积 *Precondition: *Postcondition: */ LinkList PolyMultiply(LNode *plist1, LNode *plist2) { LNode *pa, *pb; LNode *result = (LNode*)malloc(sizeof(LNode)); LNode *r = result; // 不能少!否则result所指不是头指针 pa = plist1->next; pb = plist2->next; while (pa) { while (pb) { LNode *current = (LNode*)malloc(sizeof(LNode)); current->A= pa->m * pb->A; //系数相乘 current->m = pa->m + pb->m; //指数相加 r->next = current; current->next = NULL; r = r->next; pb = pb->next; } pa = pa->next; pb = plist2->next; //pb又一次指向头结点 } PolyMerge(result); return result; } /** *Operation: Computing the value of the polynomia *Precondition: Ordered Polynomial Linklist *Postcondition: The value of the polynomial */ float HornorEvaluate(LNode *plist, float x) { //int max = GetMaxExpn(plist) + 10; int n = 0; int i; float result = 0; //float Poly[max]; //VC6 sidn‘t support VLA float Poly[20]; LNode *p = plist->next; memset(Poly, 0, sizeof(Poly)); while (p) { if (p->m == n) { Poly[n++] = p->A; p = p->next; } else Poly[n++] = 0; } //Transform linklist to array to store the polynomial /*for(i=0;i<n;i++) //调试时输出中间变量方便调试 { printf("[%d]:%0.2f ",i,Poly[i]); } printf("\n");*/ result = Poly[n - 1]; for (i = n - 1; i>0; i--) //循环次数及下标关系千万不能错! { result = result*x + Poly[i - 1]; //printf("[%d %0.2f] ",i,result); //调试时输出中间变量方便调试 } return result; } /** *Operation: *Precondition: *Postcondition: */ int GetMaxExpn(LNode *plist) { LNode *p = plist->next; int max = p->m; while (p) { if (p->m > max) max = p->m; p = p->next; } return max; }
C算法与数据结构-线性表的应用,多项式求和---ShinePans
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。