首页 > 代码库 > (离散化+树状数组求逆序数) poj 2299

(离散化+树状数组求逆序数) poj 2299

Ultra-QuickSort
Time Limit: 7000MS Memory Limit: 65536K
Total Submissions: 44390 Accepted: 16149

Description

技术分享In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,

Ultra-QuickSort produces the output 
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

59105431230

Sample Output

60
#include<iostream>#include<cstdio>#include<cstring>#include<string>#include<cmath>#include<cstdlib>#include<algorithm>using namespace std;#define N 1000000int n,reflect[N],c[N];long long ans;struct node{      int val;      int pos;}a[N];bool cmp(node a,node b){      return a.val<b.val;}int lowbit(int x){      return x&(-x);}int sum(int x){      int sum=0;      while(x>0)      {          sum+=c[x];          x=x-lowbit(x);      }      return sum;}void add(int pos,int x){      while(pos<N)      {            c[pos]+=x;            pos+=lowbit(pos);      }}int main(){      while(scanf("%d",&n)!=EOF)      {            if(n==0)                  break;            memset(reflect,0,sizeof(reflect));            memset(c,0,sizeof(c));            ans=0;            for(int i=1;i<=n;i++)            {                  scanf("%d",&a[i].val);                  a[i].pos=i;            }            sort(a+1,a+1+n,cmp);            for(int i=1;i<=n;i++)                  reflect[a[i].pos]=i;            for(int i=1;i<=n;i++)            {                  add(reflect[i],1);                  ans+=i-sum(reflect[i]);            }            printf("%I64d\n",ans);      }      return 0;}

  

(离散化+树状数组求逆序数) poj 2299