首页 > 代码库 > hdu 5147 Sequence II (树状数组 求逆序数)

hdu 5147 Sequence II (树状数组 求逆序数)

题目链接

Sequence II

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 331    Accepted Submission(s): 151


Problem Description
Long long ago, there is a sequence A with length n. All numbers in this sequence is no smaller than 1 and no bigger than n, and all numbers are different in this sequence.
Please calculate how many quad (a,b,c,d) satisfy:
1. 1a<b<c<dn
2. Aa<Ab
3. Ac<Ad
 

 

Input
The first line contains a single integer T, indicating the number of test cases.
Each test case begins with a line contains an integer n.
The next line follows n integers A1,A2,,An.

[Technical Specification]
1 <= T <= 100
1 <= n <= 50000
1 <= Ai <= n
 

 

Output
For each case output one line contains a integer,the number of quad.
 

 

Sample Input
151 3 2 4 5
 

 

Sample Output
4
题意:
很久很久以前,有一个长度为n的数列A,数列中的每个数都不小于1且不大于n,且数列中不存在两个相同的数.请统计有多少四元组(a,b,c,d)满足:1. 1a<b<c<dn2. Aa<Ab3. Ac<Ad

分析:
我的做法是把四元组分解成二元组来处理,分解的方法就是枚举把数组依次分为两部分,然后对每部分都用树状数组求逆序数,结果相乘就是满足条件的四元组的个数。
树状数组求逆序数的做法是,因为知道数列里的数是1-n,所以可以 以个数为c[]数组的元素,值为下标,通过求和来 求大于当前数 或者 小于当前数的个数
 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <vector> 7 #include <algorithm> 8 #define LL __int64 9 const int maxn = 1e5 + 10;10 using namespace std;11 LL a[maxn], c[maxn], n, f[maxn];12 13 int lowbit(int x)14 {15     return x&(-x);16 }17 void add(int x,int d)18 {19     while(x <= n)20     {21         c[x] += d;22         x +=lowbit(x);23     }24 }25 LL sum(int x)26 {27     LL ret = 0;28     while(x > 0)29     {30         ret += c[x];31         x -= lowbit(x);32     }33     return ret;34 }35 36 int main()37 {38     int t;39     LL i, ans, tmp;40     scanf("%d", &t);41     while(t--)42     {43         ans = 0;44         scanf("%I64d", &n);45 46         memset(f, 0, sizeof(f));47         memset(c, 0, sizeof(c));48         for(i = 1; i <= n; i++)49         {50             scanf("%I64d", &a[i]);51             add(a[i], 1);52             f[i] = f[i-1] + sum(a[i]-1);53         }54 55         memset(c, 0, sizeof(c));56         tmp = 0;57         for(i = n; i >= 1; i--)58         {59             tmp = sum(n) - sum(a[i]);60             add(a[i], 1);61             ans += tmp*f[i-1];62         }63         printf("%I64d\n", ans);64     }65     return 0;66 }

 



 

hdu 5147 Sequence II (树状数组 求逆序数)