首页 > 代码库 > Java生成动态GIF图片

Java生成动态GIF图片

共涉及到三个java文件,分别是NeuQuant.java,LZWEncoder.java,AnimatedGifEncoder.java,有了这三个文件,我们可以自己编写方法调用。

代码如下:

测试类:

 BufferedImage src1 = ImageIO.read(new File("Img221785570.jpg"));        BufferedImage src2 = ImageIO.read(new File("W.gif"));        //BufferedImage src3 = ImageIO.read(new File("c:/ship3.jpg"));         AnimatedGifEncoder e = new AnimatedGifEncoder();         e.setRepeat(0);         e.start("laoma.gif");         e.setDelay(300); // 1 frame per sec         e.addFrame(src1);         e.setDelay(100);         e.addFrame(src2);         e.setDelay(100);     //  e.addFrame(src2);         e.finish();

NeuQuant.java

 public class NeuQuant    {        protected static final int netsize = 256; /* number of colours used */        /* four primes near 500 - assume no image has a length so large */     /* that it is divisible by all four primes */        protected static final int prime1 = 499;        protected static final int prime2 = 491;        protected static final int prime3 = 487;        protected static final int prime4 = 503;        protected static final int minpicturebytes = (3 * prime4);        /* minimum size for input image */     /* Program Skeleton        ----------------        [select samplefac in range 1..30]        [read image from input file]        pic = (unsigned char*) malloc(3*width*height);        initnet(pic,3*width*height,samplefac);        learn();        unbiasnet();        [write output image header, using writecolourmap(f)]        inxbuild();        write output image using inxsearch(b,g,r)      */     /* Network Definitions        ------------------- */        protected static final int maxnetpos = (netsize - 1);        protected static final int netbiasshift = 4; /* bias for colour values */        protected static final int ncycles = 100; /* no. of learning cycles */        /* defs for freq and bias */        protected static final int intbiasshift = 16; /* bias for fractions */        protected static final int intbias = (((int) 1) << intbiasshift);        protected static final int gammashift = 10; /* gamma = 1024 */        protected static final int gamma = (((int) 1) << gammashift);        protected static final int betashift = 10;        protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */        protected static final int betagamma =                (intbias << (gammashift - betashift));        /* defs for decreasing radius factor */        protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */        protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */        protected static final int radiusbias = (((int) 1) << radiusbiasshift);        protected static final int initradius = (initrad * radiusbias); /* and decreases by a */        protected static final int radiusdec = 30; /* factor of 1/30 each cycle */        /* defs for decreasing alpha factor */        protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */        protected static final int initalpha = (((int) 1) << alphabiasshift);        protected int alphadec; /* biased by 10 bits */        /* radbias and alpharadbias used for radpower calculation */        protected static final int radbiasshift = 8;        protected static final int radbias = (((int) 1) << radbiasshift);        protected static final int alpharadbshift = (alphabiasshift + radbiasshift);        protected static final int alpharadbias = (((int) 1) << alpharadbshift);        /* Types and Global Variables        -------------------------- */        protected byte[] thepicture; /* the input image itself */        protected int lengthcount; /* lengthcount = H*W*3 */        protected int samplefac; /* sampling factor 1..30 */        //   typedef int pixel[4];                /* BGRc */        protected int[][] network; /* the network itself - [netsize][4] */        protected int[] netindex = new int[256];        /* for network lookup - really 256 */        protected int[] bias = new int[netsize];        /* bias and freq arrays for learning */        protected int[] freq = new int[netsize];        protected int[] radpower = new int[initrad];        /* radpower for precomputation */     /* Initialise network in range (0,0,0) to (255,255,255) and set parameters        ----------------------------------------------------------------------- */        public NeuQuant(byte[] thepic, int len, int sample) {            int i;            int[] p;            thepicture = thepic;            lengthcount = len;            samplefac = sample;            network = new int[netsize][];            for (i = 0; i < netsize; i++) {                network[i] = new int[4];                p = network[i];                p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;                freq[i] = intbias / netsize; /* 1/netsize */                bias[i] = 0;            }        }        public byte[] colorMap() {            byte[] map = new byte[3 * netsize];            int[] index = new int[netsize];            for (int i = 0; i < netsize; i++)                index[network[i][3]] = i;            int k = 0;            for (int i = 0; i < netsize; i++) {                int j = index[i];                map[k++] = (byte) (network[j][0]);                map[k++] = (byte) (network[j][1]);                map[k++] = (byte) (network[j][2]);            }            return map;        }        /* Insertion sort of network and building of netindex[0..255] (to do after unbias)           ------------------------------------------------------------------------------- */        public void inxbuild() {            int i, j, smallpos, smallval;            int[] p;            int[] q;            int previouscol, startpos;            previouscol = 0;            startpos = 0;            for (i = 0; i < netsize; i++) {                p = network[i];                smallpos = i;                smallval = p[1]; /* index on g */       /* find smallest in i..netsize-1 */                for (j = i + 1; j < netsize; j++) {                    q = network[j];                    if (q[1] < smallval) { /* index on g */                        smallpos = j;                        smallval = q[1]; /* index on g */                    }                }                q = network[smallpos];       /* swap p (i) and q (smallpos) entries */                if (i != smallpos) {                    j = q[0];                    q[0] = p[0];                    p[0] = j;                    j = q[1];                    q[1] = p[1];                    p[1] = j;                    j = q[2];                    q[2] = p[2];                    p[2] = j;                    j = q[3];                    q[3] = p[3];                    p[3] = j;                }       /* smallval entry is now in position i */                if (smallval != previouscol) {                    netindex[previouscol] = (startpos + i) >> 1;                    for (j = previouscol + 1; j < smallval; j++)                        netindex[j] = i;                    previouscol = smallval;                    startpos = i;                }            }            netindex[previouscol] = (startpos + maxnetpos) >> 1;            for (j = previouscol + 1; j < 256; j++)                netindex[j] = maxnetpos; /* really 256 */        }        /* Main Learning Loop           ------------------ */        public void learn() {            int i, j, b, g, r;            int radius, rad, alpha, step, delta, samplepixels;            byte[] p;            int pix, lim;            if (lengthcount < minpicturebytes)                samplefac = 1;            alphadec = 30 + ((samplefac - 1) / 3);            p = thepicture;            pix = 0;            lim = lengthcount;            samplepixels = lengthcount / (3 * samplefac);            delta = samplepixels / ncycles;            alpha = initalpha;            radius = initradius;            rad = radius >> radiusbiasshift;            if (rad <= 1)                rad = 0;            for (i = 0; i < rad; i++)                radpower[i] =                        alpha * (((rad * rad - i * i) * radbias) / (rad * rad));            //fprintf(stderr,"beginning 1D learning: initial radius=%d/n", rad);            if (lengthcount < minpicturebytes)                step = 3;            else if ((lengthcount % prime1) != 0)                step = 3 * prime1;            else {                if ((lengthcount % prime2) != 0)                    step = 3 * prime2;                else {                    if ((lengthcount % prime3) != 0)                        step = 3 * prime3;                    else                        step = 3 * prime4;                }            }            i = 0;            while (i < samplepixels) {                b = (p[pix + 0] & 0xff) << netbiasshift;                g = (p[pix + 1] & 0xff) << netbiasshift;                r = (p[pix + 2] & 0xff) << netbiasshift;                j = contest(b, g, r);                altersingle(alpha, j, b, g, r);                if (rad != 0)                    alterneigh(rad, j, b, g, r); /* alter neighbours */                pix += step;                if (pix >= lim)                    pix -= lengthcount;                i++;                if (delta == 0)                    delta = 1;                if (i % delta == 0) {                    alpha -= alpha / alphadec;                    radius -= radius / radiusdec;                    rad = radius >> radiusbiasshift;                    if (rad <= 1)                        rad = 0;                    for (j = 0; j < rad; j++)                        radpower[j] =                                alpha * (((rad * rad - j * j) * radbias) / (rad * rad));                }            }            //fprintf(stderr,"finished 1D learning: final alpha=%f !/n",((float)alpha)/initalpha);        }        /* Search for BGR values 0..255 (after net is unbiased) and return colour index           ---------------------------------------------------------------------------- */        public int map(int b, int g, int r) {            int i, j, dist, a, bestd;            int[] p;            int best;            bestd = 1000; /* biggest possible dist is 256*3 */            best = -1;            i = netindex[g]; /* index on g */            j = i - 1; /* start at netindex[g] and work outwards */            while ((i < netsize) || (j >= 0)) {                if (i < netsize) {                    p = network[i];                    dist = p[1] - g; /* inx key */                    if (dist >= bestd)                        i = netsize; /* stop iter */                    else {                        i++;                        if (dist < 0)                            dist = -dist;                        a = p[0] - b;                        if (a < 0)                            a = -a;                        dist += a;                        if (dist < bestd) {                            a = p[2] - r;                            if (a < 0)                                a = -a;                            dist += a;                            if (dist < bestd) {                                bestd = dist;                                best = p[3];                            }                        }                    }                }                if (j >= 0) {                    p = network[j];                    dist = g - p[1]; /* inx key - reverse dif */                    if (dist >= bestd)                        j = -1; /* stop iter */                    else {                        j--;                        if (dist < 0)                            dist = -dist;                        a = p[0] - b;                        if (a < 0)                            a = -a;                        dist += a;                        if (dist < bestd) {                            a = p[2] - r;                            if (a < 0)                                a = -a;                            dist += a;                            if (dist < bestd) {                                bestd = dist;                                best = p[3];                            }                        }                    }                }            }            return (best);        }        public byte[] process() {            learn();            unbiasnet();            inxbuild();            return colorMap();        }        /* Unbias network to give byte values 0..255 and record position i to prepare for sort           ----------------------------------------------------------------------------------- */        public void unbiasnet() {            int i, j;            for (i = 0; i < netsize; i++) {                network[i][0] >>= netbiasshift;                network[i][1] >>= netbiasshift;                network[i][2] >>= netbiasshift;                network[i][3] = i; /* record colour no */            }        }        /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]           --------------------------------------------------------------------------------- */        protected void alterneigh(int rad, int i, int b, int g, int r) {            int j, k, lo, hi, a, m;            int[] p;            lo = i - rad;            if (lo < -1)                lo = -1;            hi = i + rad;            if (hi > netsize)                hi = netsize;            j = i + 1;            k = i - 1;            m = 1;            while ((j < hi) || (k > lo)) {                a = radpower[m++];                if (j < hi) {                    p = network[j++];                    try {                        p[0] -= (a * (p[0] - b)) / alpharadbias;                        p[1] -= (a * (p[1] - g)) / alpharadbias;                        p[2] -= (a * (p[2] - r)) / alpharadbias;                    } catch (Exception e) {                    } // prevents 1.3 miscompilation                }                if (k > lo) {                    p = network[k--];                    try {                        p[0] -= (a * (p[0] - b)) / alpharadbias;                        p[1] -= (a * (p[1] - g)) / alpharadbias;                        p[2] -= (a * (p[2] - r)) / alpharadbias;                    } catch (Exception e) {                    }                }            }        }        /* Move neuron i towards biased (b,g,r) by factor alpha           ---------------------------------------------------- */        protected void altersingle(int alpha, int i, int b, int g, int r) {      /* alter hit neuron */            int[] n = network[i];            n[0] -= (alpha * (n[0] - b)) / initalpha;            n[1] -= (alpha * (n[1] - g)) / initalpha;            n[2] -= (alpha * (n[2] - r)) / initalpha;        }        /* Search for biased BGR values           ---------------------------- */        protected int contest(int b, int g, int r) {      /* finds closest neuron (min dist) and updates freq */      /* finds best neuron (min dist-bias) and returns position */      /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */      /* bias[i] = gamma*((1/netsize)-freq[i]) */            int i, dist, a, biasdist, betafreq;            int bestpos, bestbiaspos, bestd, bestbiasd;            int[] n;            bestd = ~(((int) 1) << 31);            bestbiasd = bestd;            bestpos = -1;            bestbiaspos = bestpos;            for (i = 0; i < netsize; i++) {                n = network[i];                dist = n[0] - b;                if (dist < 0)                    dist = -dist;                a = n[1] - g;                if (a < 0)                    a = -a;                dist += a;                a = n[2] - r;                if (a < 0)                    a = -a;                dist += a;                if (dist < bestd) {                    bestd = dist;                    bestpos = i;                }                biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));                if (biasdist < bestbiasd) {                    bestbiasd = biasdist;                    bestbiaspos = i;                }                betafreq = (freq[i] >> betashift);                freq[i] -= betafreq;                bias[i] += (betafreq << gammashift);            }            freq[bestpos] += beta;            bias[bestpos] -= betagamma;            return (bestbiaspos);        }    }

LZWEncoder.java源码如下:

package com.yeetrack.selenium.Image;    import java.io.OutputStream;    import java.io.IOException;    //==============================================================================    //  Adapted from Jef Poskanzer‘s Java port by way of J. M. G. Elliott.    //  K Weiner 12/00    class LZWEncoder {        private static final int EOF = -1;        private int imgW, imgH;        private byte[] pixAry;        private int initCodeSize;        private int remaining;        private int curPixel;        // GIFCOMPR.C       - GIF Image compression routines        //        // Lempel-Ziv compression based on ‘compress‘.  GIF modifications by        // David Rowley (mgardi@watdcsu.waterloo.edu)        // General DEFINEs        static final int BITS = 12;        static final int HSIZE = 5003; // 80% occupancy        // GIF Image compression - modified ‘compress‘        //        // Based on: compress.c - File compression ala IEEE Computer, June 1984.        //        // By Authors:  Spencer W. Thomas      (decvax!harpo!utah-cs!utah-gr!thomas)        //              Jim McKie              (decvax!mcvax!jim)        //              Steve Davies           (decvax!vax135!petsd!peora!srd)        //              Ken Turkowski          (decvax!decwrl!turtlevax!ken)        //              James A. Woods         (decvax!ihnp4!ames!jaw)        //              Joe Orost              (decvax!vax135!petsd!joe)        int n_bits; // number of bits/code        int maxbits = BITS; // user settable max # bits/code        int maxcode; // maximum code, given n_bits        int maxmaxcode = 1 << BITS; // should NEVER generate this code        int[] htab = new int[HSIZE];        int[] codetab = new int[HSIZE];        int hsize = HSIZE; // for dynamic table sizing        int free_ent = 0; // first unused entry        // block compression parameters -- after all codes are used up,        // and compression rate changes, start over.        boolean clear_flg = false;        // Algorithm:  use open addressing double hashing (no chaining) on the        // prefix code / next character combination.  We do a variant of Knuth‘s        // algorithm D (vol. 3, sec. 6.4) along with G. Knott‘s relatively-prime        // secondary probe.  Here, the modular division first probe is gives way        // to a faster exclusive-or manipulation.  Also do block compression with        // an adaptive reset, whereby the code table is cleared when the compression        // ratio decreases, but after the table fills.  The variable-length output        // codes are re-sized at this point, and a special CLEAR code is generated        // for the decompressor.  Late addition:  construct the table according to        // file size for noticeable speed improvement on small files.  Please direct        // questions about this implementation to ames!jaw.        int g_init_bits;        int ClearCode;        int EOFCode;        // output        //        // Output the given code.        // Inputs:        //      code:   A n_bits-bit integer.  If == -1, then EOF.  This assumes        //              that n_bits =< wordsize - 1.        // Outputs:        //      Outputs code to the file.        // Assumptions:        //      Chars are 8 bits long.        // Algorithm:        //      Maintain a BITS character long buffer (so that 8 codes will        // fit in it exactly).  Use the VAX insv instruction to insert each        // code in turn.  When the buffer fills up empty it and start over.        int cur_accum = 0;        int cur_bits = 0;        int masks[] =                {                        0x0000,                        0x0001,                        0x0003,                        0x0007,                        0x000F,                        0x001F,                        0x003F,                        0x007F,                        0x00FF,                        0x01FF,                        0x03FF,                        0x07FF,                        0x0FFF,                        0x1FFF,                        0x3FFF,                        0x7FFF,                        0xFFFF };        // Number of characters so far in this ‘packet‘        int a_count;        // Define the storage for the packet accumulator        byte[] accum = new byte[256];        //----------------------------------------------------------------------------        LZWEncoder(int width, int height, byte[] pixels, int color_depth) {            imgW = width;            imgH = height;            pixAry = pixels;            initCodeSize = Math.max(2, color_depth);        }        // Add a character to the end of the current packet, and if it is 254        // characters, flush the packet to disk.        void char_out(byte c, OutputStream outs) throws IOException {            accum[a_count++] = c;            if (a_count >= 254)                flush_char(outs);        }        // Clear out the hash table        // table clear for block compress        void cl_block(OutputStream outs) throws IOException {            cl_hash(hsize);            free_ent = ClearCode + 2;            clear_flg = true;            output(ClearCode, outs);        }        // reset code table        void cl_hash(int hsize) {            for (int i = 0; i < hsize; ++i)                htab[i] = -1;        }        void compress(int init_bits, OutputStream outs) throws IOException {            int fcode;            int i /* = 0 */;            int c;            int ent;            int disp;            int hsize_reg;            int hshift;            // Set up the globals:  g_init_bits - initial number of bits            g_init_bits = init_bits;            // Set up the necessary values            clear_flg = false;            n_bits = g_init_bits;            maxcode = MAXCODE(n_bits);            ClearCode = 1 << (init_bits - 1);            EOFCode = ClearCode + 1;            free_ent = ClearCode + 2;            a_count = 0; // clear packet            ent = nextPixel();            hshift = 0;            for (fcode = hsize; fcode < 65536; fcode *= 2)                ++hshift;            hshift = 8 - hshift; // set hash code range bound            hsize_reg = hsize;            cl_hash(hsize_reg); // clear hash table            output(ClearCode, outs);            outer_loop : while ((c = nextPixel()) != EOF) {                fcode = (c << maxbits) + ent;                i = (c << hshift) ^ ent; // xor hashing                if (htab[i] == fcode) {                    ent = codetab[i];                    continue;                } else if (htab[i] >= 0) // non-empty slot                {                    disp = hsize_reg - i; // secondary hash (after G. Knott)                    if (i == 0)                        disp = 1;                    do {                        if ((i -= disp) < 0)                            i += hsize_reg;                        if (htab[i] == fcode) {                            ent = codetab[i];                            continue outer_loop;                        }                    } while (htab[i] >= 0);                }                output(ent, outs);                ent = c;                if (free_ent < maxmaxcode) {                    codetab[i] = free_ent++; // code -> hashtable                    htab[i] = fcode;                } else                    cl_block(outs);            }            // Put out the final code.            output(ent, outs);            output(EOFCode, outs);        }        //----------------------------------------------------------------------------        void encode(OutputStream os) throws IOException {            os.write(initCodeSize); // write "initial code size" byte            remaining = imgW * imgH; // reset navigation variables            curPixel = 0;            compress(initCodeSize + 1, os); // compress and write the pixel data            os.write(0); // write block terminator        }        // Flush the packet to disk, and reset the accumulator        void flush_char(OutputStream outs) throws IOException {            if (a_count > 0) {                outs.write(a_count);                outs.write(accum, 0, a_count);                a_count = 0;            }        }        final int MAXCODE(int n_bits) {            return (1 << n_bits) - 1;        }        //----------------------------------------------------------------------------        // Return the next pixel from the image        //----------------------------------------------------------------------------        private int nextPixel() {            if (remaining == 0)                return EOF;            --remaining;            byte pix = pixAry[curPixel++];            return pix & 0xff;        }        void output(int code, OutputStream outs) throws IOException {            cur_accum &= masks[cur_bits];            if (cur_bits > 0)                cur_accum |= (code << cur_bits);            else                cur_accum = code;            cur_bits += n_bits;            while (cur_bits >= 8) {                char_out((byte) (cur_accum & 0xff), outs);                cur_accum >>= 8;                cur_bits -= 8;            }            // If the next entry is going to be too big for the code size,            // then increase it, if possible.            if (free_ent > maxcode || clear_flg) {                if (clear_flg) {                    maxcode = MAXCODE(n_bits = g_init_bits);                    clear_flg = false;                } else {                    ++n_bits;                    if (n_bits == maxbits)                        maxcode = maxmaxcode;                    else                        maxcode = MAXCODE(n_bits);                }            }            if (code == EOFCode) {                // At EOF, write the rest of the buffer.                while (cur_bits > 0) {                    char_out((byte) (cur_accum & 0xff), outs);                    cur_accum >>= 8;                    cur_bits -= 8;                }                flush_char(outs);            }        }    }

AnimatedGifEncoder.java源码如下:

 package com.yeetrack.selenium.Image;    import java.io.*;    import java.awt.*;    import java.awt.image.*;    /**     * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or     * more frames.     * <pre>     * Example:     *    AnimatedGifEncoder e = new AnimatedGifEncoder();     *    e.start(outputFileName);     *    e.setDelay(1000);   // 1 frame per sec     *    e.addFrame(image1);     *    e.addFrame(image2);     *    e.finish();     * </pre>     * No copyright asserted on the source code of this class.  May be used     * for any purpose, however, refer to the Unisys LZW patent for restrictions     * on use of the associated LZWEncoder class.  Please forward any corrections     * to kweiner@fmsware.com.     *     * @author Kevin Weiner, FM Software     * @version 1.03 November 2003     *     */    public class AnimatedGifEncoder {        protected int width; // image size        protected int height;        protected Color transparent = null; // transparent color if given        protected int transIndex; // transparent index in color table        protected int repeat = -1; // no repeat        protected int delay = 0; // frame delay (hundredths)        protected boolean started = false; // ready to output frames        protected OutputStream out;        protected BufferedImage image; // current frame        protected byte[] pixels; // BGR byte array from frame        protected byte[] indexedPixels; // converted frame indexed to palette        protected int colorDepth; // number of bit planes        protected byte[] colorTab; // RGB palette        protected boolean[] usedEntry = new boolean[256]; // active palette entries        protected int palSize = 7; // color table size (bits-1)        protected int dispose = -1; // disposal code (-1 = use default)        protected boolean closeStream = false; // close stream when finished        protected boolean firstFrame = true;        protected boolean sizeSet = false; // if false, get size from first frame        protected int sample = 10; // default sample interval for quantizer        /**         * Sets the delay time between each frame, or changes it         * for subsequent frames (applies to last frame added).         *         * @param ms int delay time in milliseconds         */        public void setDelay(int ms) {            delay = Math.round(ms / 10.0f);        }        /**         * Sets the GIF frame disposal code for the last added frame         * and any subsequent frames.  Default is 0 if no transparent         * color has been set, otherwise 2.         * @param code int disposal code.         */        public void setDispose(int code) {            if (code >= 0) {                dispose = code;            }        }        /**         * Sets the number of times the set of GIF frames         * should be played.  Default is 1; 0 means play         * indefinitely.  Must be invoked before the first         * image is added.         *         * @param iter int number of iterations.         * @return         */        public void setRepeat(int iter) {            if (iter >= 0) {                repeat = iter;            }        }        /**         * Sets the transparent color for the last added frame         * and any subsequent frames.         * Since all colors are subject to modification         * in the quantization process, the color in the final         * palette for each frame closest to the given color         * becomes the transparent color for that frame.         * May be set to null to indicate no transparent color.         *         * @param c Color to be treated as transparent on display.         */        public void setTransparent(Color c) {            transparent = c;        }        /**         * Adds next GIF frame.  The frame is not written immediately, but is         * actually deferred until the next frame is received so that timing         * data can be inserted.  Invoking <code>finish()</code> flushes all         * frames.  If <code>setSize</code> was not invoked, the size of the         * first image is used for all subsequent frames.         *         * @param im BufferedImage containing frame to write.         * @return true if successful.         */        public boolean addFrame(BufferedImage im) {            if ((im == null) || !started) {                return false;            }            boolean ok = true;            try {                if (!sizeSet) {                    // use first frame‘s size                    setSize(im.getWidth(), im.getHeight());                }                image = im;                getImagePixels(); // convert to correct format if necessary                analyzePixels(); // build color table & map pixels                if (firstFrame) {                    writeLSD(); // logical screen descriptior                    writePalette(); // global color table                    if (repeat >= 0) {                        // use NS app extension to indicate reps                        writeNetscapeExt();                    }                }                writeGraphicCtrlExt(); // write graphic control extension                writeImageDesc(); // image descriptor                if (!firstFrame) {                    writePalette(); // local color table                }                writePixels(); // encode and write pixel data                firstFrame = false;            } catch (IOException e) {                ok = false;            }            return ok;        }        /**         * Flushes any pending data and closes output file.         * If writing to an OutputStream, the stream is not         * closed.         */        public boolean finish() {            if (!started) return false;            boolean ok = true;            started = false;            try {                out.write(0x3b); // gif trailer                out.flush();                if (closeStream) {                    out.close();                }            } catch (IOException e) {                ok = false;            }            // reset for subsequent use            transIndex = 0;            out = null;            image = null;            pixels = null;            indexedPixels = null;            colorTab = null;            closeStream = false;            firstFrame = true;            return ok;        }        /**         * Sets frame rate in frames per second.  Equivalent to         * <code>setDelay(1000/fps)</code>.         *         * @param fps float frame rate (frames per second)         */        public void setFrameRate(float fps) {            if (fps != 0f) {                delay = Math.round(100f / fps);            }        }        /**         * Sets quality of color quantization (conversion of images         * to the maximum 256 colors allowed by the GIF specification).         * Lower values (minimum = 1) produce better colors, but slow         * processing significantly.  10 is the default, and produces         * good color mapping at reasonable speeds.  Values greater         * than 20 do not yield significant improvements in speed.         *         * @param quality int greater than 0.         * @return         */        public void setQuality(int quality) {            if (quality < 1) quality = 1;            sample = quality;        }        /**         * Sets the GIF frame size.  The default size is the         * size of the first frame added if this method is         * not invoked.         *         * @param w int frame width.         * @param h int frame width.         */        public void setSize(int w, int h) {            if (started && !firstFrame) return;            width = w;            height = h;            if (width < 1) width = 320;            if (height < 1) height = 240;            sizeSet = true;        }        /**         * Initiates GIF file creation on the given stream.  The stream         * is not closed automatically.         *         * @param os OutputStream on which GIF images are written.         * @return false if initial write failed.         */        public boolean start(OutputStream os) {            if (os == null) return false;            boolean ok = true;            closeStream = false;            out = os;            try {                writeString("GIF89a"); // header            } catch (IOException e) {                ok = false;            }            return started = ok;        }        /**         * Initiates writing of a GIF file with the specified name.         *         * @param file String containing output file name.         * @return false if open or initial write failed.         */        public boolean start(String file) {            boolean ok = true;            try {                out = new BufferedOutputStream(new FileOutputStream(file));                ok = start(out);                closeStream = true;            } catch (IOException e) {                ok = false;            }            return started = ok;        }        /**         * Analyzes image colors and creates color map.         */        protected void analyzePixels() {            int len = pixels.length;            int nPix = len / 3;            indexedPixels = new byte[nPix];            NeuQuant nq = new NeuQuant(pixels, len, sample);            // initialize quantizer            colorTab = nq.process(); // create reduced palette            // convert map from BGR to RGB            for (int i = 0; i < colorTab.length; i += 3) {                byte temp = colorTab[i];                colorTab[i] = colorTab[i + 2];                colorTab[i + 2] = temp;                usedEntry[i / 3] = false;            }            // map image pixels to new palette            int k = 0;            for (int i = 0; i < nPix; i++) {                int index =                        nq.map(pixels[k++] & 0xff,                                pixels[k++] & 0xff,                                pixels[k++] & 0xff);                usedEntry[index] = true;                indexedPixels[i] = (byte) index;            }            pixels = null;            colorDepth = 8;            palSize = 7;            // get closest match to transparent color if specified            if (transparent != null) {                transIndex = findClosest(transparent);            }        }        /**         * Returns index of palette color closest to c         *         */        protected int findClosest(Color c) {            if (colorTab == null) return -1;            int r = c.getRed();            int g = c.getGreen();            int b = c.getBlue();            int minpos = 0;            int dmin = 256 * 256 * 256;            int len = colorTab.length;            for (int i = 0; i < len;) {                int dr = r - (colorTab[i++] & 0xff);                int dg = g - (colorTab[i++] & 0xff);                int db = b - (colorTab[i] & 0xff);                int d = dr * dr + dg * dg + db * db;                int index = i / 3;                if (usedEntry[index] && (d < dmin)) {                    dmin = d;                    minpos = index;                }                i++;            }            return minpos;        }        /**         * Extracts image pixels into byte array "pixels"         */        protected void getImagePixels() {            int w = image.getWidth();            int h = image.getHeight();            int type = image.getType();            if ((w != width)                    || (h != height)                    || (type != BufferedImage.TYPE_3BYTE_BGR)) {                // create new image with right size/format                BufferedImage temp =                        new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);                Graphics2D g = temp.createGraphics();                g.drawImage(image, 0, 0, null);                image = temp;            }            pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();        }        /**         * Writes Graphic Control Extension         */        protected void writeGraphicCtrlExt() throws IOException {            out.write(0x21); // extension introducer            out.write(0xf9); // GCE label            out.write(4); // data block size            int transp, disp;            if (transparent == null) {                transp = 0;                disp = 0; // dispose = no action            } else {                transp = 1;                disp = 2; // force clear if using transparent color            }            if (dispose >= 0) {                disp = dispose & 7; // user override            }            disp <<= 2;            // packed fields            out.write(0 | // 1:3 reserved                    disp | // 4:6 disposal                    0 | // 7   user input - 0 = none                    transp); // 8   transparency flag            writeShort(delay); // delay x 1/100 sec            out.write(transIndex); // transparent color index            out.write(0); // block terminator        }        /**         * Writes Image Descriptor         */        protected void writeImageDesc() throws IOException {            out.write(0x2c); // image separator            writeShort(0); // image position x,y = 0,0            writeShort(0);            writeShort(width); // image size            writeShort(height);            // packed fields            if (firstFrame) {                // no LCT  - GCT is used for first (or only) frame                out.write(0);            } else {                // specify normal LCT                out.write(0x80 | // 1 local color table  1=yes                        0 | // 2 interlace - 0=no                        0 | // 3 sorted - 0=no                        0 | // 4-5 reserved                        palSize); // 6-8 size of color table            }        }        /**         * Writes Logical Screen Descriptor         */        protected void writeLSD() throws IOException {            // logical screen size            writeShort(width);            writeShort(height);            // packed fields            out.write((0x80 | // 1   : global color table flag = 1 (gct used)                    0x70 | // 2-4 : color resolution = 7                    0x00 | // 5   : gct sort flag = 0                    palSize)); // 6-8 : gct size            out.write(0); // background color index            out.write(0); // pixel aspect ratio - assume 1:1        }        /**         * Writes Netscape application extension to define         * repeat count.         */        protected void writeNetscapeExt() throws IOException {            out.write(0x21); // extension introducer            out.write(0xff); // app extension label            out.write(11); // block size            writeString("NETSCAPE" + "2.0"); // app id + auth code            out.write(3); // sub-block size            out.write(1); // loop sub-block id            writeShort(repeat); // loop count (extra iterations, 0=repeat forever)            out.write(0); // block terminator        }        /**         * Writes color table         */        protected void writePalette() throws IOException {            out.write(colorTab, 0, colorTab.length);            int n = (3 * 256) - colorTab.length;            for (int i = 0; i < n; i++) {                out.write(0);            }        }        /**         * Encodes and writes pixel data         */        protected void writePixels() throws IOException {            LZWEncoder encoder =                    new LZWEncoder(width, height, indexedPixels, colorDepth);            encoder.encode(out);        }        /**         *    Write 16-bit value to output stream, LSB first         */        protected void writeShort(int value) throws IOException {            out.write(value & 0xff);            out.write((value >> 8) & 0xff);        }        /**         * Writes string to output stream         */        protected void writeString(String s) throws IOException {            for (int i = 0; i < s.length(); i++) {                out.write((byte) s.charAt(i));            }        }    }

本文转自:http://www.yeetrack.com/?p=943

Java生成动态GIF图片