首页 > 代码库 > 4.2 Reduction优化
4.2 Reduction优化
首先添加上Heterogeneous Parallel Programming class 中 lab: Reduction的代码:
myReduction.c
// MP Reduction// Given a list (lst) of length n// Output its sum = lst[0] + lst[1] + ... + lst[n-1];#include <wb.h>#define BLOCK_SIZE 512 //@@ You can change this#define wbCheck(stmt) do { \ cudaError_t err = stmt; if (err != cudaSuccess) { wbLog(ERROR, "Failed to run stmt ", #stmt); wbLog(ERROR, "Got CUDA error ... ", cudaGetErrorString(err)); return -1; } } while(0)__global__ void reduction(float *g_idata, float *g_odata, unsigned int n){ __shared__ float sdata[BLOCK_SIZE]; // load shared mem unsigned int tid = threadIdx.x; unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = (i < n) ? g_idata[i] : 0; __syncthreads(); // do reduction in shared mem, stride is divided by 2, for (unsigned int s=blockDim.x/2; s>0; s>>=1) { //__syncthreads(); if (tid < s) { sdata[tid] += sdata[tid + s]; } __syncthreads(); } // write result for this block to global mem if (tid == 0) g_odata[blockIdx.x] = sdata[0];} __global__ void total(float * input, float * output, int len) { //@@ Load a segment of the input vector into shared memory __shared__ float partialSum[2 * BLOCK_SIZE]; //blockDim.x is not okay, compile fail unsigned int t = threadIdx.x; unsigned int start = 2 * blockIdx.x * blockDim.x; if (start + t < len) partialSum[t] = input[start + t]; else partialSum[t] = 0; if (start + blockDim.x + t < len) partialSum[blockDim.x + t] = input[start + blockDim.x + t]; else partialSum[blockDim.x + t] = 0; //@@ Traverse the reduction tree for (unsigned int stride = blockDim.x; stride >= 1; stride >>= 1) { __syncthreads(); if (t < stride) partialSum[t] += partialSum[t+stride]; } //@@ Write the computed sum of the block to the output vector at the //@@ correct index if (t == 0) output[blockIdx.x] = partialSum[0];}int main(int argc, char ** argv) { int ii; wbArg_t args; float * hostInput; // The input 1D list float * hostOutput; // The output list float * deviceInput; float * deviceOutput; int numInputElements; // number of elements in the input list int numOutputElements; // number of elements in the output list args = wbArg_read(argc, argv); wbTime_start(Generic, "Importing data and creating memory on host"); hostInput = (float *) wbImport(wbArg_getInputFile(args, 0), &numInputElements); numOutputElements = numInputElements / (BLOCK_SIZE); if (numInputElements % (BLOCK_SIZE)) { numOutputElements++; } //This for kernel total /*numOutputElements = numInputElements / (BLOCK_SIZE <<1); if (numInputElements % (BLOCK_SIZE)<<1) { numOutputElements++; } */ hostOutput = (float*) malloc(numOutputElements * sizeof(float)); wbTime_stop(Generic, "Importing data and creating memory on host"); wbLog(TRACE, "The number of input elements in the input is ", numInputElements); wbLog(TRACE, "The number of output elements in the input is ", numOutputElements); wbTime_start(GPU, "Allocating GPU memory."); //@@ Allocate GPU memory here cudaMalloc((void **) &deviceInput, numInputElements * sizeof(float)); cudaMalloc((void **) &deviceOutput, numOutputElements * sizeof(float)); wbTime_stop(GPU, "Allocating GPU memory."); wbTime_start(GPU, "Copying input memory to the GPU."); //@@ Copy memory to the GPU here cudaMemcpy(deviceInput, hostInput, numInputElements * sizeof(float), cudaMemcpyHostToDevice); wbTime_stop(GPU, "Copying input memory to the GPU."); //@@ Initialize the grid and block dimensions here dim3 dimGrid(numOutputElements, 1, 1); dim3 dimBlock(BLOCK_SIZE, 1, 1); wbTime_start(Compute, "Performing CUDA computation"); //@@ Launch the GPU Kernel here reduction<<<dimGrid,dimBlock>>>(deviceInput, deviceOutput, numInputElements); //total<<<dimGrid, dimBlock>>>(deviceInput, deviceOutput, numInputElements); cudaDeviceSynchronize(); wbTime_stop(Compute, "Performing CUDA computation"); wbTime_start(Copy, "Copying output memory to the CPU"); //@@ Copy the GPU memory back to the CPU here cudaMemcpy(hostOutput, deviceOutput, sizeof(float) * numOutputElements, cudaMemcpyDeviceToHost); wbTime_stop(Copy, "Copying output memory to the CPU"); /******************************************************************** * Reduce output vector on the host * NOTE: One could also perform the reduction of the output vector * recursively and support any size input. For simplicity, we do not * require that for this lab. ********************************************************************/ for (ii = 1; ii < numOutputElements; ii++) { hostOutput[0] += hostOutput[ii]; } wbTime_start(GPU, "Freeing GPU Memory"); //@@ Free the GPU memory here cudaFree(deviceInput); cudaFree(deviceOutput); wbTime_stop(GPU, "Freeing GPU Memory"); wbSolution(args, hostOutput, 1); free(hostInput); free(hostOutput); return 0;}
Reduction优化:
4.2 Reduction优化
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。