首页 > 代码库 > Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query
Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query
/** Spark SQL源代码分析系列文章*/
前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的。
那么基于以上存储结构,我们查询cache在jvm内的数据又是怎样查询的,本文将揭示查询In-Memory Data的方式。
一、引子
本例使用hive console里查询cache后的src表。
select value from src
当我们将src表cache到了内存后,再次查询src,能够通过analyzed运行计划来观察内部调用。
即parse后,会形成InMemoryRelation结点,最后运行物理计划时,会调用InMemoryColumnarTableScan这个结点的方法。
例如以下:
scala> val exe = executePlan(sql("select value from src").queryExecution.analyzed) 14/09/26 10:30:26 INFO parse.ParseDriver: Parsing command: select value from src 14/09/26 10:30:26 INFO parse.ParseDriver: Parse Completed exe: org.apache.spark.sql.hive.test.TestHive.QueryExecution = == Parsed Logical Plan == Project [value#5] InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) == Analyzed Logical Plan == Project [value#5] InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) == Optimized Logical Plan == Project [value#5] InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) == Physical Plan == InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)) //查询内存中表的入口 Code Generation: false == RDD ==
二、InMemoryColumnarTableScan
InMemoryColumnarTableScan是Catalyst里的一个叶子结点,包括了要查询的attributes,和InMemoryRelation(封装了我们缓存的In-Columnar Storage数据结构)。
运行叶子节点,出发execute方法对内存数据进行查询。
1、查询时,调用InMemoryRelation,对其封装的内存数据结构的每一个分区进行操作。
2、获取要请求的attributes,如上,查询请求的是src表的value属性。
3、依据目的查询表达式,来获取在相应存储结构中,请求列的index索引。
4、通过ColumnAccessor来对每一个buffer进行訪问,获取相应查询数据,并封装为Row对象返回。
private[sql] case class InMemoryColumnarTableScan( attributes: Seq[Attribute], relation: InMemoryRelation) extends LeafNode { override def output: Seq[Attribute] = attributes override def execute() = { relation.cachedColumnBuffers.mapPartitions { iterator => // Find the ordinals of the requested columns. If none are requested, use the first. val requestedColumns = if (attributes.isEmpty) { Seq(0) } else { attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId)) //依据表达式exprId找出相应列的ByteBuffer的索引 } iterator .map(batch => requestedColumns.map(batch(_)).map(ColumnAccessor(_)))//依据索引取得相应请求列的ByteBuffer,并封装为ColumnAccessor。 .flatMap { columnAccessors => val nextRow = new GenericMutableRow(columnAccessors.length) //Row的长度 new Iterator[Row] { override def next() = { var i = 0 while (i < nextRow.length) { columnAccessors(i).extractTo(nextRow, i) //依据相应index和长度,从byterbuffer里取得值,封装到row里 i += 1 } nextRow } override def hasNext = columnAccessors.head.hasNext } } } } }
查询请求的列,例如以下:
scala> exe.optimizedPlan res93: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan = Project [value#5] InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) scala> val relation = exe.optimizedPlan(1) relation: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan = InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None) scala> val request_relation = exe.executedPlan request_relation: org.apache.spark.sql.execution.SparkPlan = InMemoryColumnarTableScan [value#5], (InMemoryRelation [key#4,value#5], false, 1000, (HiveTableScan [key#4,value#5], (MetastoreRelation default, src, None), None)) scala> request_relation.output //请求的列,我们请求的仅仅有value列 res95: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5) scala> relation.output //默认保存在relation中的全部列 res96: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(key#4, value#5) scala> val attributes = request_relation.output attributes: Seq[org.apache.spark.sql.catalyst.expressions.Attribute] = ArrayBuffer(value#5)
整个流程非常简洁,关键步骤是第三步。依据ExprId来查找到,请求列的索引
attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId))
//依据exprId找出相应ID scala> val attr_index = attributes.map(a => relation.output.indexWhere(_.exprId == a.exprId)) attr_index: Seq[Int] = ArrayBuffer(1) //找到请求的列value的索引是1, 我们查询就从Index为1的bytebuffer中,请求数据 scala> relation.output.foreach(e=>println(e.exprId)) ExprId(4) //相应<span style="font-family: Arial, Helvetica, sans-serif;">[key#4,value#5]</span> ExprId(5) scala> request_relation.output.foreach(e=>println(e.exprId)) ExprId(5)
三、ColumnAccessor
ColumnAccessor相应每一种类型,类图例如以下:
最后返回一个新的迭代器:
new Iterator[Row] { override def next() = { var i = 0 while (i < nextRow.length) { //请求列的长度 columnAccessors(i).extractTo(nextRow, i)//调用columnType.setField(row, ordinal, extractSingle(buffer))解析buffer i += 1 } nextRow//返回解析后的row } override def hasNext = columnAccessors.head.hasNext }
四、总结
Spark SQL In-Memory Columnar Storage的查询相对来说还是比較简单的,其查询思想主要和存储的数据结构有关。
即存储时,按每列放到一个bytebuffer,形成一个bytebuffer数组。
查询时,依据请求列的exprId查找到上述数组的索引,然后使用ColumnAccessor对buffer中字段进行解析,最后封装为Row对象,返回。
——EOF——
原创文章,转载请注明出自:http://blog.csdn.net/oopsoom/article/details/39577419
Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。