首页 > 代码库 > 1002. A+B for Polynomials

1002. A+B for Polynomials

1002. A+B for Polynomials (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.

 

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input
2 1 2.4 0 3.22 2 1.5 1 0.5
Sample Output
3 2 1.5 1 2.9 0 3.2
 1 #include<stdio.h> 2 #include<math.h> 3 #include<stdlib.h> 4 #include<string.h> 5  6 int main() 7 { 8     double a[1010], b[1010]; 9     memset(a, 0, sizeof(a));10     memset(b, 0, sizeof(b));11     int ka, kb, i, j, x, y, maxa, maxb;12     scanf("%d", &ka);13     scanf("%d", &x);14     scanf("%lf", &a[x]);15     maxa = x;16     for(i = 1; i < ka; i++)17     {18         scanf("%d", &x);19         scanf("%lf", &a[x]);20     }21     scanf("%d", &kb);22     scanf("%d", &y);23     scanf("%lf", &b[y]);24     maxb = y;25     for(i = 1; i < kb; i++)26     {27         scanf("%d", &y);28         scanf("%lf", &b[y]);29     }30     if(maxa < maxb)31     {32         int temp = maxa;33         maxa = maxb;34         maxb = temp;35     }36     for(i = maxa; i >= 0; i--)37     {38         a[i] += b[i];39     }40     int count = 0;41     for(i = maxa; i >= 0; i--)42     {43         if(a[i] != 0)44             count++;45     }46     printf("%d", count);47     for(i = maxa; i >= 0; i--)48     {49         if(a[i] != 0)50         {51             printf(" %d %.1f", i, a[i]);52         }53     }54     printf("\n");55     return 0;56 }

 

1002. A+B for Polynomials