首页 > 代码库 > POSIX 线程详解(2-线程创建和销毁)

POSIX 线程详解(2-线程创建和销毁)

        算法旨在用尽可能简单的思路解决问题,理解算法也应该是一个越看越简单的过程,当你看到算法里的一串概念,或者一大坨代码,第一感觉是复杂,此时不妨从例子入手,通过一个简单的例子,并编程实现,这个过程其实就可以理解清楚算法里的最重要的思想,之后扩展,对算法的引理或者更复杂的情况,对算法进行改进。最后,再考虑时间和空间复杂度的问题。

       了解这个算法是源于在Network Alignment问题中,图论算法用得比较多,而对于alignment,特别是pairwise alignment, 又经常遇到maximum bipartite matching问题,解决这个问题,是通过Network Flow问题的解法来实现。


一、Network Flow

    Network Flow,指的是在从source 到 destination的路径组成一个network, 每条边有一个capacity, 表示从这条边上能通过的最大信息流,而Network Flow问题则要找出从源到目的地能通过的最大流, Maximum Flow. 信息在流动的过程中需要遵循两个原则;

    1. 对于每个节点,流入和流出的信息必须相等。

     2.流过每条边的信息不能超过边上的capacity.

      最大流问题和minimum cut是等价的,找最大流也就是找minimum cut,minimum cut是如下定义的:

     我们要在Network上删除一些边,删除掉这些边后,从source 就没有路径到目的地了,我们要找到尽可能少的边,来达到这个目的,这就是minimum cut。


二、 Ford-Fulkerson算法

      第一遍读这个算法的时候,不懂,现在读这个算法,觉得很清晰,现在把算法的思路复述一遍,不知道第一次读的人会不会觉得容易理解:

      1、 构建Residual graph:由于在原network上已经有了capacity, 现在给定这个网络一个流flow的值, 例如边是(u,v)我们计算capacity-f, 同时我们也计算(v,u),值为f(因为capacity为0),

              如果一条边的这个值为正,则保留,否则删除。

       2、augmenting path: 通过1得到的就是Residual graph,这个graph上的从source到destination的所有路径都叫做augmenting path.

       3、针对每条augmenting path: 改变path上所有边的capacity,改变规则如下(以(u,v)为例):

                       找到这条path上的最小的capacity, f,

                       减少u->v的capacity, 增加v->u的capacity.

        算法的时间复杂度 O(m+n)f),f是max-flow.

代码:

// C++ program for implementation of Ford Fulkerson algorithm
#include <iostream>
#include <limits.h>
#include <string.h>
#include <queue>

using namespace std;

// Number of vertices in given graph
#define V 6

/* Returns true if there is a path from source ‘s‘ to sink ‘t‘ in
  residual graph. Also fills parent[] to store the path */
bool bfs(int rGraph[V][V], int s, int t, int parent[])
{
    // Create a visited array and mark all vertices as not visited
    bool visited[V];
    memset(visited, 0, sizeof(visited));

    // Create a queue, enqueue source vertex and mark source vertex
    // as visited
    queue <int> q;
    q.push(s);
    visited[s] = true;
    parent[s] = -1;

    // Standard BFS Loop
    while (!q.empty())
    {
        int u = q.front();
        q.pop();

        for (int v=0; v<V; v++)
        {
            if (visited[v]==false && rGraph[u][v] > 0)
            {
                q.push(v);
                parent[v] = u;
                visited[v] = true;
            }
        }
    }

    // If we reached sink in BFS starting from source, then return
    // true, else false
    return (visited[t] == true);
}

// Returns tne maximum flow from s to t in the given graph
int fordFulkerson(int graph[V][V], int s, int t)
{
    int u, v;

    // Create a residual graph and fill the residual graph with
    // given capacities in the original graph as residual capacities
    // in residual graph
    int rGraph[V][V]; // Residual graph where rGraph[i][j] indicates
                     // residual capacity of edge from i to j (if there
                     // is an edge. If rGraph[i][j] is 0, then there is not)
    for (u = 0; u < V; u++)
        for (v = 0; v < V; v++)
             rGraph[u][v] = graph[u][v];

    int parent[V];  // This array is filled by BFS and to store path

    int max_flow = 0;  // There is no flow initially

    // Augment the flow while tere is path from source to sink
    while (bfs(rGraph, s, t, parent))
    {
        // Find minimum residual capacity of the edhes along the
        // path filled by BFS. Or we can say find the maximum flow
        // through the path found.
        int path_flow = INT_MAX;
        for (v=t; v!=s; v=parent[v])
        {
            u = parent[v];
            path_flow = min(path_flow, rGraph[u][v]);
        }

        // update residual capacities of the edges and reverse edges
        // along the path
        for (v=t; v != s; v=parent[v])
        {
            u = parent[v];
            rGraph[u][v] -= path_flow;
            rGraph[v][u] += path_flow;
        }

        // Add path flow to overall flow
        max_flow += path_flow;
    }

    // Return the overall flow
    return max_flow;
}

// Driver program to test above functions
int main()
{
    // Let us create a graph shown in the above example
    int graph[V][V] = { {0, 16, 13, 0, 0, 0},
                        {0, 0, 10, 12, 0, 0},
                        {0, 4, 0, 0, 14, 0},
                        {0, 0, 9, 0, 0, 20},
                        {0, 0, 0, 7, 0, 4},
                        {0, 0, 0, 0, 0, 0}
                      };

    cout << "The maximum possible flow is " << fordFulkerson(graph, 0, 5);

    return 0;
}

三、Maximum Bipartite Matching

      解决这个问题就很简单了,我们先添加上源和目的地节点,假设是任务分配问题,则源可以有边指向所有人,所有任务有边可以指向目的地,我们要找的是人和任务之间的最优匹配。

代码:

// A C++ program to find maximal Bipartite matching.
#include <iostream>
#include <string.h>
using namespace std;

// M is number of applicants and N is number of jobs
#define M 6
#define N 6

// A DFS based recursive function that returns true if a
// matching for vertex u is possible
bool bpm(bool bpGraph[M][N], int u, bool seen[], int matchR[])
{
    // Try every job one by one
    for (int v = 0; v < N; v++)
    {
        // If applicant u is interested in job v and v is
        // not visited
        if (bpGraph[u][v] && !seen[v])
        {
            seen[v] = true; // Mark v as visited

            // If job ‘v‘ is not assigned to an applicant OR
            // previously assigned applicant for job v (which is matchR[v])
            // has an alternate job available.
            // Since v is marked as visited in the above line, matchR[v]
            // in the following recursive call will not get job ‘v‘ again
            if (matchR[v] < 0 || bpm(bpGraph, matchR[v], seen, matchR))
            {
                matchR[v] = u;
                return true;
            }
        }
    }
    return false;
}

// Returns maximum number of matching from M to N
int maxBPM(bool bpGraph[M][N])
{
    // An array to keep track of the applicants assigned to
    // jobs. The value of matchR[i] is the applicant number
    // assigned to job i, the value -1 indicates nobody is
    // assigned.
    int matchR[N];

    // Initially all jobs are available
    memset(matchR, -1, sizeof(matchR));

    int result = 0; // Count of jobs assigned to applicants
    for (int u = 0; u < M; u++)
    {
        // Mark all jobs as not seen for next applicant.
        bool seen[N];
        memset(seen, 0, sizeof(seen));

        // Find if the applicant ‘u‘ can get a job
        if (bpm(bpGraph, u, seen, matchR))
            result++;
    }
    return result;
}

// Driver program to test above functions
int main()
{
    // Let us create a bpGraph shown in the above example
    bool bpGraph[M][N] = {  {0, 1, 1, 0, 0, 0},
                        {1, 0, 0, 1, 0, 0},
                        {0, 0, 1, 0, 0, 0},
                        {0, 0, 1, 1, 0, 0},
                        {0, 0, 0, 0, 0, 0},
                        {0, 0, 0, 0, 0, 1}
                      };

    cout << "Maximum number of applicants that can get job is "
         << maxBPM(bpGraph);

    return 0;
}

四、对于任务分配问题,还有Hungrian算法,这个后面再讲,此算法的时间复杂度和空间复杂度以及改进也可以探讨