首页 > 代码库 > Linux学习 : 裸板调试 之 使用MMU

Linux学习 : 裸板调试 之 使用MMU

MMU(Memory Management Unit,内存管理单元),操作系统通过使用处理器的MMU功能实现以下:
1)虚拟内存。有了虚拟内存,可以在处理器上运行比实际物理内存大的应用程序。为了使用虚拟内存,操作系统通常要设置一个交换分区(通常是硬盘),通过将不活跃的内存中的数据放入交换分区,操作系统可以腾出其空间来为其它的程序服务。虚拟内存是通过虚拟地址来实现的。
2)内存保护。根据需要对特定的内存区块的访问进行保护,通过这一功能,我们可以将特定的内存块设置成只读、只写或是可同时读写。

实验平台:s3c2440

@*************************************************************************@ File:head.S@ 功能:设置SDRAM,将第二部分代码复制到SDRAM,设置页表,启动MMU,@       然后跳到SDRAM继续执行@*************************************************************************       .text.global _start_start:    ldr sp, =4096                       @ 设置栈指针,以下都是C函数,调用前需要设好栈    bl  disable_watch_dog               @ 关闭WATCHDOG,否则CPU会不断重启    bl  memsetup                        @ 设置存储控制器以使用SDRAM    bl  copy_2th_to_sdram               @ 将第二部分代码复制到SDRAM    bl  create_page_table               @ 设置页表    bl  mmu_init                        @ 启动MMU    ldr sp, =0xB4000000                 @ 重设栈指针,指向SDRAM顶端(使用虚拟地址)    ldr pc, =0xB0004000                 @ 跳到SDRAM中继续执行第二部分代码    @ ldr pc, =mainhalt_loop:    b   halt_loop

初始化、启动MMU:

/* * init.c: 进行一些初始化,在Steppingstone中运行 * 它和head.S同属第一部分程序,此时MMU未开启,使用物理地址 */ /* WATCHDOG寄存器 */#define WTCON           (*(volatile unsigned long *)0x53000000)/* 存储控制器的寄存器起始地址 */#define MEM_CTL_BASE    0x48000000/* * 关闭WATCHDOG,否则CPU会不断重启 */void disable_watch_dog(void){    WTCON = 0;  // 关闭WATCHDOG很简单,往这个寄存器写0即可}/* * 设置存储控制器以使用SDRAM */void memsetup(void){    /* SDRAM 13个寄存器的值 */    unsigned long  const    mem_cfg_val[]={ 0x22011110,     //BWSCON                                            0x00000700,     //BANKCON0                                            0x00000700,     //BANKCON1                                            0x00000700,     //BANKCON2                                            0x00000700,     //BANKCON3                                              0x00000700,     //BANKCON4                                            0x00000700,     //BANKCON5                                            0x00018005,     //BANKCON6                                            0x00018005,     //BANKCON7                                            0x008C07A3,     //REFRESH                                            0x000000B1,     //BANKSIZE                                            0x00000030,     //MRSRB6                                            0x00000030,     //MRSRB7                                    };    int     i = 0;    volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE;    for(; i < 13; i++)        p[i] = mem_cfg_val[i];}/* * 将第二部分代码复制到SDRAM */void copy_2th_to_sdram(void){    unsigned int *pdwSrc  = http://www.mamicode.com/(unsigned int *)2048;    unsigned int *pdwDest = (unsigned int *)0x30004000;        while (pdwSrc < (unsigned int *)4096)    {        *pdwDest = *pdwSrc;        pdwDest++;        pdwSrc++;    }}/* * 设置页表 */void create_page_table(void){/*  * 用于段描述符的一些宏定义 */ #define MMU_FULL_ACCESS     (3 << 10)   /* 访问权限 */#define MMU_DOMAIN          (0 << 5)    /* 属于哪个域 */#define MMU_SPECIAL         (1 << 4)    /* 必须是1 */#define MMU_CACHEABLE       (1 << 3)    /* cacheable */#define MMU_BUFFERABLE      (1 << 2)    /* bufferable */#define MMU_SECTION         (2)         /* 表示这是段描述符 */#define MMU_SECDESC         (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | \                             MMU_SECTION)#define MMU_SECDESC_WB      (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | \                             MMU_CACHEABLE | MMU_BUFFERABLE | MMU_SECTION)#define MMU_SECTION_SIZE    0x00100000    unsigned long virtuladdr, physicaladdr;    unsigned long *mmu_tlb_base = (unsigned long *)0x30000000;        /*     * Steppingstone的起始物理地址为0,第一部分程序的起始运行地址也是0,     * 为了在开启MMU后仍能运行第一部分的程序,     * 将0~1M的虚拟地址映射到同样的物理地址     */    virtuladdr = 0;    physicaladdr = 0;    *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) |                                             MMU_SECDESC_WB;    /*     * 0x56000000是GPIO寄存器的起始物理地址,     * GPFCON和GPFDAT这两个寄存器的物理地址0x56000050、0x56000054,     * 为了在第二部分程序中能以地址0xA0000050、0xA0000054来操作GPFCON、GPFDAT,     * 把从0xA0000000开始的1M虚拟地址空间映射到从0x56000000开始的1M物理地址空间     */    virtuladdr = 0xA0000000;    physicaladdr = 0x56000000;    *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) |                                             MMU_SECDESC;    /*     * SDRAM的物理地址范围是0x30000000~0x33FFFFFF,     * 将虚拟地址0xB0000000~0xB3FFFFFF映射到物理地址0x30000000~0x33FFFFFF上,     * 总共64M,涉及64个段描述符     */    virtuladdr = 0xB0000000;    physicaladdr = 0x30000000;    while (virtuladdr < 0xB4000000)    {        *(mmu_tlb_base + (virtuladdr >> 20)) = (physicaladdr & 0xFFF00000) |                                                 MMU_SECDESC_WB;        virtuladdr += 0x100000;        physicaladdr += 0x100000;    }}/* * 启动MMU */void mmu_init(void){    unsigned long ttb = 0x30000000;// ARM休系架构与编程// 嵌入汇编:LINUX内核完全注释__asm__(    "mov    r0, #0\n"    "mcr    p15, 0, r0, c7, c7, 0\n"    /* 使无效ICaches和DCaches */        "mcr    p15, 0, r0, c7, c10, 4\n"   /* drain write buffer on v4 */    "mcr    p15, 0, r0, c8, c7, 0\n"    /* 使无效指令、数据TLB */        "mov    r4, %0\n"                   /* r4 = 页表基址 */    "mcr    p15, 0, r4, c2, c0, 0\n"    /* 设置页表基址寄存器 */        "mvn    r0, #0\n"                       "mcr    p15, 0, r0, c3, c0, 0\n"    /* 域访问控制寄存器设为0xFFFFFFFF,                                         * 不进行权限检查                                          */        /*      * 对于控制寄存器,先读出其值,在这基础上修改感兴趣的位,     * 然后再写入     */    "mrc    p15, 0, r0, c1, c0, 0\n"    /* 读出控制寄存器的值 */        /* 控制寄存器的低16位含义为:.RVI ..RS B... .CAM     * R : 表示换出Cache中的条目时使用的算法,     *     0 = Random replacement;1 = Round robin replacement     * V : 表示异常向量表所在的位置,     *     0 = Low addresses = 0x00000000;1 = High addresses = 0xFFFF0000     * I : 0 = 关闭ICaches;1 = 开启ICaches     * R、S : 用来与页表中的描述符一起确定内存的访问权限     * B : 0 = CPU为小字节序;1 = CPU为大字节序     * C : 0 = 关闭DCaches;1 = 开启DCaches     * A : 0 = 数据访问时不进行地址对齐检查;1 = 数据访问时进行地址对齐检查     * M : 0 = 关闭MMU;1 = 开启MMU     */        /*       * 先清除不需要的位,往下若需要则重新设置它们         */                                        /* .RVI ..RS B... .CAM */     "bic    r0, r0, #0x3000\n"          /* ..11 .... .... .... 清除V、I位 */    "bic    r0, r0, #0x0300\n"          /* .... ..11 .... .... 清除R、S位 */    "bic    r0, r0, #0x0087\n"          /* .... .... 1... .111 清除B/C/A/M */    /*     * 设置需要的位     */    "orr    r0, r0, #0x0002\n"          /* .... .... .... ..1. 开启对齐检查 */    "orr    r0, r0, #0x0004\n"          /* .... .... .... .1.. 开启DCaches */    "orr    r0, r0, #0x1000\n"          /* ...1 .... .... .... 开启ICaches */    "orr    r0, r0, #0x0001\n"          /* .... .... .... ...1 使能MMU */        "mcr    p15, 0, r0, c1, c0, 0\n"    /* 将修改的值写入控制寄存器 */    : /* 无输出 */    : "r" (ttb) );}

led测试C代码:

/* * leds.c: 循环点亮4个LED * 属于第二部分程序,此时MMU已开启,使用虚拟地址 */ #define GPFCON      (*(volatile unsigned long *)0xA0000050)     // 物理地址0x56000050#define GPFDAT      (*(volatile unsigned long *)0xA0000054)     // 物理地址0x56000054#define    GPF4_out    (1<<(4*2))#define    GPF5_out    (1<<(5*2))#define    GPF6_out    (1<<(6*2))/* * wait函数加上“static inline”是有原因的, * 这样可以使得编译leds.c时,wait嵌入main中,编译结果中只有main一个函数。 * 于是在连接时,main函数的地址就是由连接文件指定的运行时装载地址。 * 而连接文件mmu.lds中,指定了leds.o的运行时装载地址为0xB4004000, * 这样,head.S中的“ldr pc, =0xB4004000”就是跳去执行main函数。 */static inline void wait(unsigned long dly){    for(; dly > 0; dly--);}int main(void){    unsigned long i = 0;        GPFCON = GPF4_out|GPF5_out|GPF6_out;        // 将LED1,2,4对应的GPF4/5/6三个引脚设为输出    while(1){        wait(30000);        GPFDAT = (~(i<<4));         // 根据i的值,点亮LED1,2,4        if(++i == 8)            i = 0;    }    return 0;}

Makefile:

objs := head.o init.o leds.ommu.bin : $(objs)    arm-linux-ld -Tmmu.lds -o mmu_elf $^    arm-linux-objcopy -O binary -S mmu_elf $@    arm-linux-objdump -D -m arm mmu_elf > mmu.dis    %.o:%.c    arm-linux-gcc -Wall -O2 -c -o $@ $<%.o:%.S    arm-linux-gcc -Wall -O2 -c -o $@ $<clean:    rm -f mmu.bin mmu_elf mmu.dis *.o            

 特殊链接:

SECTIONS {   firtst    0x00000000 : { head.o init.o }  second    0xB0004000 : AT(2048) { leds.o }}  

 

Linux学习 : 裸板调试 之 使用MMU