首页 > 代码库 > POJ 1068 Parencodings
POJ 1068 Parencodings
Parencodings
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 24932 | Accepted: 14695 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
264 5 6 6 6 69 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 61 1 2 4 5 1 1 3 9
Source
Tehran 2001
解析:模拟。
#include <cstdio>char s[10000000];int a[25];int n;int res[25];int rid[25];void solve(){ int cnt = 0, rcnt = 0; for(int i = 1; i <= a[0]; ++i) s[cnt++] = ‘(‘; s[cnt] = ‘)‘; rid[rcnt++] = cnt; ++cnt; for(int i = 1; i < n; ++i){ int num = a[i]-a[i-1]; for(int j = 1; j <= num; ++j) s[cnt++] = ‘(‘; s[cnt] = ‘)‘; rid[rcnt++] = cnt; ++cnt; } int res_cnt = 0; for(int i = 0; i < rcnt; ++i){ int l = 0, r = 1; for(int j = rid[i]-1; ; --j){ if(s[j] == ‘(‘){ ++l; if(l == r){ res[res_cnt++] = l; break; } } else ++r; } } for(int i = 0; i < n-1; ++i) printf("%d ", res[i]); printf("%d\n", res[n-1]);}int main(){ int t; scanf("%d", &t); while(t--){ scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%d", &a[i]); solve(); } return 0;}
POJ 1068 Parencodings
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。