首页 > 代码库 > POJ 1068--Parencodings--括号逆匹配(模拟)
POJ 1068--Parencodings--括号逆匹配(模拟)
Parencodings
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 19655 | Accepted: 11870 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
Source
题意搞了就好几天。。sad 回来补题
题目中给了两个序列 p 和 w 和一个串s(s是已经匹配好的括号)其中p序列中的第i个数代表第i个右括号前面的左括号的个数(好蛋疼) w序列中第i个数代表第i个右括号和与之匹配的左括号这中间有多少对匹配的括号(包括i) 很简单,根据给定p序列把s串模拟出来,然后从左边开始遍历s,遇到右括号就向前逆向匹配,就是找到与这个右括号匹配的左括号,可以设两个变量l,r 初始化为0,从遇到的这个右括号的位置开始遇到左括号l++,遇到右括号r++,当l==r时 l的值就是匹配的括号的对数。
#include <cstdio> #include <iostream> #include <cstring> #include <cstdlib> #include <cctype> #include <algorithm> #include <vector> using namespace std; int a[1000100],ans[1000100]; char s[1000010]; int main() { int i,j,n,t; cin>>t;getchar(); while(t--) { int p=0; cin>>n;a[0]=0; for(i=1;i<=n;i++) cin>>a[i]; for(i=1;i<=n;i++) { for(j=0;j<a[i]-a[i-1];j++) s[p++]='('; s[p++]=')'; } s[p]='\0'; //cout<<s<<endl; int q=0; for(i=0;i<p;i++) { if(s[i]==')') { int l=0,r=0; for(j=i;j>=0;j--) { if(s[j]=='(')l++; if(s[j]==')')r++; if(l==r) break; } ans[q++]=r; } } for(i=0;i<q;i++) if(i!=q-1) cout<<ans[i]<<" "; else cout<<ans[i]<<endl; } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。