首页 > 代码库 > poj1068 模拟
poj1068 模拟
Parencodings
Time Limit: 1000 MS Memory Limit: 10000 KB
64-bit integer IO format: %I64d , %I64u Java class name: Main
[Submit] [Status] [Discuss]
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
264 5 6 6 6 69 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 61 1 2 4 5 1 1 3 9
#include <iostream>#include <string.h>#include <stdio.h>#include <stack>using namespace std;int main(){ int t,n,temp; int a[1000]; int val[1000],w[1000]; cin>>t; while(t--) { memset(val,0,sizeof(val)); cin>>n; for(int j=0; j<n; j++) { cin>>a[j]; temp=a[j]+j; val[temp]=1; ///让)==1 (==0 /*for(int i=0;i<n*2;i++) ///输出1的地方 cout<<val[i]<<‘ ‘; cout<<endl;*/ ///cout<<val[temp]<<endl; ==1 从后往前数)的个数 for(int i=temp-1,sum=1,falg=0; i>=0; i--) /// val[i]==) flag标记(是否与)匹配的 { if(falg==0&&val[i]==0) ///eg:) { w[j]=sum; break; } else if(val[i]==0) ///eg:((()) { falg--; } else if(val[i]==1) ///eg:))) { sum++; falg++; } } } for(int i=0; i<n; i++) { cout<<w[i]<<‘ ‘; } cout<<endl; } return 0;}
注释:
题意:P:从左到右 遇见第i个完整括号开始 (的个数 q:从左到右遇见第一个)时 与该)匹配的括号内 )的个数 (包含该))
1: 因为不用输出括号 所以将(标记为0 )标记为1
2:对于q 要计算一个大括号内的全部) 所以要从后向前遍历
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。