首页 > 代码库 > 【noip模拟题】迎接仪式(dp+特殊的技巧)
【noip模拟题】迎接仪式(dp+特殊的技巧)
好神的一题。。。
这是一道DP题,本题的难点在于状态的确定,由于调整是任意的,很难划分状态,我们略微修改一下调整的形式:把一次’j’和’z’交换看做两次变换:’j’->’z’;’z’->’j’ (zz交换和jj交换是没有意义的,不作考虑);于是最多’j’->‘z‘ ‘z‘->‘j‘各K次.
F[i,j,k]:=F[i-2,j-x,k-y]+1;
If A[i-1]=j then x=0 else x=1
If A[i]=z then y=0 else y=1
然后最后要看是否有那么多个j和z能够变换。
orz
#include <cstdio>#include <cstring>#include <cmath>#include <string>#include <iostream>#include <algorithm>#include <queue>#include <set>#include <map>using namespace std;typedef long long ll;#define pii pair<int, int>#define mkpii make_pair<int, int>#define pdi pair<double, int>#define mkpdi make_pair<double, int>#define pli pair<ll, int>#define mkpli make_pair<ll, int>#define rep(i, n) for(int i=0; i<(n); ++i)#define for1(i,a,n) for(int i=(a);i<=(n);++i)#define for2(i,a,n) for(int i=(a);i<(n);++i)#define for3(i,a,n) for(int i=(a);i>=(n);--i)#define for4(i,a,n) for(int i=(a);i>(n);--i)#define CC(i,a) memset(i,a,sizeof(i))#define read(a) a=getint()#define print(a) printf("%d", a)#define dbg(x) cout << (#x) << " = " << (x) << endl#define error(x) (!(x)?puts("error"):0)#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }#define printarr1(a, b) for1(_, 1, b) cout << a[_] << ‘\t‘; cout << endlinline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }inline const int max(const int &a, const int &b) { return a>b?a:b; }inline const int min(const int &a, const int &b) { return a<b?a:b; }int f[505][105][105];int n, k, ans;char a[505];int main() { read(n); read(k); scanf("%s", a+1); int mn1=0, mn2=0; for1(i, 1, n) if(a[i]==‘j‘) ++mn1; else ++mn2; for1(i, 2, n) for1(x, 0, k) for1(y, 0, k) { int t1, t2; t1=a[i]==‘j‘; t2=a[i-1]==‘z‘; f[i][x][y]=f[i-1][x][y]; if(x>=t1 && y>=t2) f[i][x][y]=max(f[i][x][y], f[i-2][x-t1][y-t2]+1); if(x==y) ans=max(ans, f[i][x][y]); } printf("%d\n", min(ans, min(mn1, mn2))); return 0;}
【问题描述】
LHX教主要来X市指导OI学习工作了。为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字。一旁的Orzer依次摆出“欢迎欢迎欢迎欢迎……”的大字,但是领队突然发现,另一旁穿着“教”和“主”字文化衫的Orzer却不太和谐。
为了简单描述这个不和谐的队列,我们用“j”替代“教”,“z”替代“主”。而一个“j”与“z”组成的序列则可以描述当前的队列。为了让教主看得尽量舒服,你必须调整队列,使得“jz”子串尽量多。每次调整你可以交换任意位置上的两个人,也就是序列中任意位置上的两个字母。而因为教主马上就来了,时间仅够最多作K次调整(当然可以调整不满K次),所以这个问题交给了你。
【输入格式】
输入文件welcome.in的第1行包含2个正整数N与K,表示了序列长度与最多交换次数。
第2行包含了一个长度为N的字符串,字符串仅由字母“j”与字母“z”组成,描述了这个序列。
【输出格式】
输出文件welcome.out仅包括一个非负整数,为调整最多K次后最后最多能出现多少个“jz”子串。
【样例输入】
5 2
zzzjj
【样例输出】
2
【样例说明】
第1次交换位置1上的z和位置4上的j,变为jzzzj;
第2次交换位置4上的z和位置5上的j,变为jzzjz。
最后的串有2个“jz”子串。
【数据规模】
对于10%的数据,有N≤10;
对于30%的数据,有K≤10;
对于40%的数据,有N≤50;
对于100%的数据,有N≤500,K≤100
【noip模拟题】迎接仪式(dp+特殊的技巧)