首页 > 代码库 > Hadoop RPC通信Server端的流程分析
Hadoop RPC通信Server端的流程分析
前2天刚刚小小的分析下Client端的流程,走的还是比较通顺的,但是RPC的服务端就显然没有那么简单了,毕竟C-S这种模式的,压力和重点都是放在Server端的,所以我也只能做个大概的分析,因为里面细节的东西太多,我也不可能理清所有细节,但是我会集合源代码把主要的流程理理清。如果读者想进一步学习的话,可自行查阅源码。
Server服务端和Client客户端在某些变量的定义上还是一致的,比如服务端也有Call,和Connection,这个很好理解,Call回调,和Connection连接是双向的。首先看一个Server类的定义:
public abstract class Server { private final boolean authorize; private boolean isSecurityEnabled; /** * The first four bytes of Hadoop RPC connections * Hadoop RPC的连接魔数字符‘hrpc’ */ public static final ByteBuffer HEADER = ByteBuffer.wrap("hrpc".getBytes()); // 1 : Introduce ping and server does not throw away RPCs // 3 : Introduce the protocol into the RPC connection header // 4 : Introduced SASL security layer public static final byte CURRENT_VERSION = 4; ....这里定义了基本的一些信息,版本号了,还有用于验证的魔数了等等。下面看看他的2个关键内部类,Connection连接和Call回调类
/** A call queued for handling. */ /** 服务端的Call列表队列 ,与客户端的是不同的*/ private static class Call { //客户端的Call Id,是从客户端上传过类的 private int id; // the client's call id //Call回调参数 private Writable param; // the parameter passed //还保存了与客户端的连接 private Connection connection; // connection to client //接收到response回应的时间 private long timestamp; // the time received when response is null // the time served when response is not null //对于此回调的回应值 private ByteBuffer response; // the response for this call ......在内部变量的设置上还是有小小的不同的,到时服务端就是通过往Call中写response处理回复的。还有一个是连接类:
/** Reads calls from a connection and queues them for handling. */ public class Connection { //连接的RPC头部是否已读 private boolean rpcHeaderRead = false; // if initial rpc header is read //版本号之后的头部信息是否已读 private boolean headerRead = false; //if the connection header that //follows version is read. private SocketChannel channel; //字节缓冲用于读写回复 private ByteBuffer data; private ByteBuffer dataLengthBuffer; //回复Call列表 private LinkedList<Call> responseQueue; //此连接下的RPC请求数 private volatile int rpcCount = 0; // number of outstanding rpcs private long lastContact; private int dataLength; private Socket socket; // Cache the remote host & port info so that even if the socket is // disconnected, we can say where it used to connect to. private String hostAddress; private int remotePort; private InetAddress addr; .....上面的变量也很好理解,不解释了,在Server端多出了下面几个关键的变量:
..... volatile private boolean running = true; // true while server runs //阻塞式Call待处理的队列 private BlockingQueue<Call> callQueue; // queued calls //与客户端的连接数链表 private List<Connection> connectionList = Collections.synchronizedList(new LinkedList<Connection>()); //maintain a list //of client connections //服务端的监听线程 private Listener listener = null; //处理应答线程 private Responder responder = null; private int numConnections = 0; //处理请求线程组 private Handler[] handlers = null; .....callQueue,待处理请求列表,ConnectionList连接列表,还有3大线程,监听,处理,应答请求线程,待处理请求人家用的还是BlockingQueue阻塞式队列,队列如果满了是插入不了需要等待的,队列为空是取不出数据也是要等待。在这点上作者是有自己的考虑的。通过上面的描述,Server类的大体框图就出来了:
好了,下面的分析重点就是3大线程的具体操作了。3大线程的在Server start操作后就会开始工作:
/** Starts the service. Must be called before any calls will be handled. */ /** 服务端的启动方法 */ public synchronized void start() { //开启3大进程监听线程,回复线程,处理请求线程组 responder.start(); listener.start(); handlers = new Handler[handlerCount]; for (int i = 0; i < handlerCount; i++) { handlers[i] = new Handler(i); handlers[i].start(); } }初始化操作在构造函数中已经执行过了的,所以这里的操作很干脆,直接开启线程。按照正常的顺序,第一步显然是listener线程干的事了,就是监听请求。
public Listener() throws IOException { ..... bind(acceptChannel.socket(), address, backlogLength); port = acceptChannel.socket().getLocalPort(); //Could be an ephemeral port // create a selector; selector= Selector.open(); readers = new Reader[readThreads]; readPool = Executors.newFixedThreadPool(readThreads); for (int i = 0; i < readThreads; i++) { Selector readSelector = Selector.open(); Reader reader = new Reader(readSelector); readers[i] = reader; //reader Runnable放入线程池中执行 readPool.execute(reader); } // Register accepts on the server socket with the selector. //Java NIO的知识,在selector上注册key的监听事件 acceptChannel.register(selector, SelectionKey.OP_ACCEPT); this.setName("IPC Server listener on " + port); this.setDaemon(true); }Listener在构造函数中做了上面一些事,初始化一些线程池了,注册读事件了。下面是他的主要在跑的程序:
@Override public void run() { LOG.info(getName() + ": starting"); SERVER.set(Server.this); while (running) { SelectionKey key = null; try { selector.select(); Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); try { if (key.isValid()) { if (key.isAcceptable()) //Listener的作用就是监听客户端的额连接事件 doAccept(key); } } catch (IOException e) { } key = null; .....在读之前就是监听连接的请求,方法就来到了doAccept(),
void doAccept(SelectionKey key) throws IOException, OutOfMemoryError { Connection c = null; ServerSocketChannel server = (ServerSocketChannel) key.channel(); SocketChannel channel; while ((channel = server.accept()) != null) { channel.configureBlocking(false); channel.socket().setTcpNoDelay(tcpNoDelay); Reader reader = getReader(); try { //连接成功之后,在NIO上注册Read读事件 reader.startAdd(); SelectionKey readKey = reader.registerChannel(channel); c = new Connection(readKey, channel, System.currentTimeMillis()); readKey.attach(c); synchronized (connectionList) { connectionList.add(numConnections, c); numConnections++; } ....accept操作之后就是把Reader操作注册到通道上:
public synchronized SelectionKey registerChannel(SocketChannel channel) throws IOException { return channel.register(readSelector, SelectionKey.OP_READ); }后面的事情就又来到了Reader的主操作了:
public void run() { LOG.info("Starting SocketReader"); synchronized (this) { while (running) { SelectionKey key = null; try { readSelector.select(); while (adding) { this.wait(1000); } Iterator<SelectionKey> iter = readSelector.selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); if (key.isValid()) { if (key.isReadable()) { //Reader的作用就是监听Read读事件 doRead(key); } } key = null; } .....跟连接的监听非常类似,操作就发生在了doRead()方法上了:
void doRead(SelectionKey key) throws InterruptedException { int count = 0; Connection c = (Connection)key.attachment(); if (c == null) { return; } c.setLastContact(System.currentTimeMillis()); try { //监听到RPC请求的读事件后,首先调用下面的方法 count = c.readAndProcess(); ....
public int readAndProcess() throws IOException, InterruptedException { while (true) { /* Read at most one RPC. If the header is not read completely yet * then iterate until we read first RPC or until there is no data left. */ int count = -1; //首先读取数据的header头部信息 if (dataLengthBuffer.remaining() > 0) { count = channelRead(channel, dataLengthBuffer); if (count < 0 || dataLengthBuffer.remaining() > 0) return count; } if (!rpcHeaderRead) { //Every connection is expected to send the header. if (rpcHeaderBuffer == null) { rpcHeaderBuffer = ByteBuffer.allocate(2); } count = channelRead(channel, rpcHeaderBuffer); if (count < 0 || rpcHeaderBuffer.remaining() > 0) { return count; } //从头部获取版本信息和验证的method类型 int version = rpcHeaderBuffer.get(0); byte[] method = new byte[] {rpcHeaderBuffer.get(1)}; authMethod = AuthMethod.read(new DataInputStream( new ByteArrayInputStream(method))); dataLengthBuffer.flip(); //在这里做if的验证,不符合要求的直接返回 if (!HEADER.equals(dataLengthBuffer) || version != CURRENT_VERSION) { //Warning is ok since this is not supposed to happen. LOG.warn("Incorrect header or version mismatch from " + hostAddress + ":" + remotePort + " got version " + version + " expected version " + CURRENT_VERSION); return -1; } .... //继承从channel通道读入数据到data中 count = channelRead(channel, data); if (data.remaining() == 0) { dataLengthBuffer.clear(); data.flip(); if (skipInitialSaslHandshake) { data = http://www.mamicode.com/null;>然后来到了下面的这个方法:private void processOneRpc(byte[] buf) throws IOException, InterruptedException { if (headerRead) { //头部信息验证完毕,正式处理处理请求数据 processData(buf); } else { //继续验证头部的剩余信息,协议和用户组信息 processHeader(buf); headerRead = true; if (!authorizeConnection()) { throw new AccessControlException("Connection from " + this + " for protocol " + header.getProtocol() + " is unauthorized for user " + user); } } }processData就是最终的处理方法了,这一路上的方法真是多啊。private void processData(byte[] buf) throws IOException, InterruptedException { DataInputStream dis = new DataInputStream(new ByteArrayInputStream(buf)); int id = dis.readInt(); // try to read an id if (LOG.isDebugEnabled()) LOG.debug(" got #" + id); //从配置根据反射获取参数类型 Writable param = ReflectionUtils.newInstance(paramClass, conf);//read param //数据读入此类似 param.readFields(dis); //依据ID,和参数构建Server服务的Call回调对象 Call call = new Call(id, param, this); //放入阻塞式Call队列 callQueue.put(call); // queue the call; maybe blocked here //增加RPC请求数的数量 incRpcCount(); // Increment the rpc count }到了这里方法结束了,所以他的核心操作就是把读请求中的参数变为Call放入到阻塞式队列中,这个就是listener干的事。然后与此相关的一个线程就有事情做了Handler处理线程:/** 处理请求Call队列 */ private class Handler extends Thread { public Handler(int instanceNumber) { this.setDaemon(true); this.setName("IPC Server handler "+ instanceNumber + " on " + port); } @Override public void run() { LOG.info(getName() + ": starting"); SERVER.set(Server.this); ByteArrayOutputStream buf = new ByteArrayOutputStream(INITIAL_RESP_BUF_SIZE); //while一直循环处理 while (running) { try { //从队列中取出call请求 final Call call = callQueue.take(); // pop the queue; maybe blocked here if (LOG.isDebugEnabled()) LOG.debug(getName() + ": has #" + call.id + " from " + call.connection); String errorClass = null; String error = null; Writable value = http://www.mamicode.com/null;>Handler的处理还算直接,就是从刚刚的待回复队列中取出Call交给下个response线程写回复的,相当于一个中转操作。阻塞式队列的一个好处是如果callQueue里面没有数据,他会阻塞在callQueue.take()这行代码上的,后面的就无法执行了。然后就把后面的操作扔给了response线程了。void doRespond(Call call) throws IOException { synchronized (call.connection.responseQueue) { call.connection.responseQueue.addLast(call); if (call.connection.responseQueue.size() == 1) { processResponse(call.connection.responseQueue, true); } } }继续看processResponse方法:private boolean processResponse(LinkedList<Call> responseQueue, boolean inHandler) throws IOException { boolean error = true; boolean done = false; // there is more data for this channel. int numElements = 0; Call call = null; try { synchronized (responseQueue) { // // If there are no items for this channel, then we are done // numElements = responseQueue.size(); if (numElements == 0) { error = false; return true; // no more data for this channel. } // // Extract the first call //从Call列表中取出一个做回复 call = responseQueue.removeFirst(); SocketChannel channel = call.connection.channel; if (LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection); } // // Send as much data as we can in the non-blocking fashion //向call.response写入回复 int numBytes = channelWrite(channel, call.response); if (numBytes < 0) { return true; } if (!call.response.hasRemaining()) { call.connection.decRpcCount(); if (numElements == 1) { // last call fully processes. done = true; // no more data for this channel. } else { done = false; // more calls pending to be sent. } if (LOG.isDebugEnabled()) { LOG.debug(getName() + ": responding to #" + call.id + " from " + call.connection + " Wrote " + numBytes + " bytes."); } } else { // // If we were unable to write the entire response out, then // insert in Selector queue. //重新把这个call加回call列表 call.connection.responseQueue.addFirst(call); if (inHandler) { //inHandler说明此回复将会过会被发送回去,需要改写时间 // set the serve time when the response has to be sent later //改写Call中收到回复的时间 call.timestamp = System.currentTimeMillis(); incPending(); try { // Wakeup the thread blocked on select, only then can the call // to channel.register() complete. writeSelector.wakeup(); channel.register(writeSelector, SelectionKey.OP_WRITE, call); .....里面的写回复的操作函数:private int channelWrite(WritableByteChannel channel, ByteBuffer buffer) throws IOException { //channel向call.response 的buffer中写入数据 int count = (buffer.remaining() <= NIO_BUFFER_LIMIT) ? channel.write(buffer) : channelIO(null, channel, buffer); if (count > 0) { rpcMetrics.incrSentBytes(count); } return count; }这里的buffer就是参数call.response,写完的回复是放入Connection类中的回复列表中的,因为一个连接可能要处理很多回复的//回复Call列表 private LinkedList<Call> responseQueue;上面的事就是Response干的事情了,3大线程围绕着一个关键的callQueue工作的,所以画了一个协议图:
还有一张函数操作的时序图,各个函数的调用流程:
在Hadoop RPC还有一个RPC的辅助类,用来你获取服务端和客户端实例的:
/** Construct a server for a protocol implementation instance listening on a * port and address, with a secret manager. */ /** 获取服务端的实例 */ public static Server getServer(final Object instance, final String bindAddress, final int port, final int numHandlers, final boolean verbose, Configuration conf, SecretManager<? extends TokenIdentifier> secretManager) throws IOException { return new Server(instance, conf, bindAddress, port, numHandlers, verbose, secretManager); }客户端搞了一个缓存机制:/** * Construct & cache an IPC client with the user-provided SocketFactory * if no cached client exists. * 获取端缓存中取出客户端,如果没有则创建一个 * @param conf Configuration * @return an IPC client */ private synchronized Client getClient(Configuration conf, SocketFactory factory) { // Construct & cache client. The configuration is only used for timeout, // and Clients have connection pools. So we can either (a) lose some // connection pooling and leak sockets, or (b) use the same timeout for all // configurations. Since the IPC is usually intended globally, not // per-job, we choose (a). Client client = clients.get(factory); if (client == null) { client = new Client(ObjectWritable.class, conf, factory); clients.put(factory, client); } else { client.incCount(); } return client; }以上就是Hadoop RPC服务端的主要流程分析,确实的忽略了很多细节。整个Hadoop RPC结构是非常复杂的,在Java NIO的基础之上,用了很多动态代理,反射的思想。
Hadoop RPC通信Server端的流程分析
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。