首页 > 代码库 > 算法与数据结构基础4:C++二叉树实现及遍历方法大全
算法与数据结构基础4:C++二叉树实现及遍历方法大全
binary search tree,中文翻译为二叉搜索树、二叉查找树或者二叉排序树。简称为BST。
本文集齐了二叉树的五大遍历算法:先序遍历、中序遍历、后序遍历、深度优先遍历和广度优先遍历(同层遍历也就是深度优先遍历)。
// BSTree.h
#include <cstdio> #include <iostream> #include <stack> #include <queue> using namespace std; // binary search tree,中文翻译为二叉搜索树、二叉查找树或者二叉排序树。简称为BST class BSTree { struct Node{ Node(int x = 0):data(x), lchild(NULL), rchild(NULL){} struct Node* lchild; struct Node* rchild; int data; }; public: // ************************************************************************** // 类的四大函数:构造函数、拷贝构造函数、重载赋值运算符、析构函数 // ************************************************************************** BSTree(); ~BSTree(); // ************************************************************************** // 增删改查 // ************************************************************************** void Insert(int x); // 返回二叉树的个数 unsigned short Size(); unsigned short Deep(); unsigned short Leaf(); bool IsEmpty(); // 遍历 void PreorderTraversal(); // 先序遍历 void InorderTraversal(); // 中序遍历 void PostorderTraversal(); // 后序遍历 void DepthFirstSearch(); // 深度优先遍历 void BreadthFirstSearch(); // 广度优先遍历 private: // 递归计算二叉树个数 unsigned short CountSize(Node* n); unsigned short CountDeep(Node* n); unsigned short CountLeaf(Node* n); // 递归遍历 void PreorderTraversal(Node* n); void InorderTraversal(Node* n); void PostorderTraversal(Node* n); void DepthFirstSearch(Node* n); void BreadthFirstSearch(Node* n); void Free(Node* node); private: Node* m_root; }; // ************************************************************************** // 私有方法 // ************************************************************************** unsigned short BSTree::CountSize(Node* n) { if(!n){ return 0; } return CountSize(n->lchild) + CountSize(n->rchild) + 1; } unsigned short BSTree::CountDeep(Node* n) { if (!n) { return 0; } int ldeep = CountDeep(n->lchild); int rdeep = CountDeep(n->rchild); return ( ldeep > rdeep ) ? (ldeep + 1) : (rdeep + 1); } unsigned short BSTree::CountLeaf(Node* n) { if (!n){ return 0; } if (!n->lchild&& !n->rchild){ return 1; } return CountLeaf(n->lchild) + CountLeaf(n->rchild); } void BSTree::PreorderTraversal(Node* n) { if (n) { cout << n->data << ","; PreorderTraversal(n->lchild); PreorderTraversal(n->rchild); } } void BSTree::InorderTraversal(Node* n) { if (n) { InorderTraversal(n->lchild); cout << n->data << ","; InorderTraversal(n->rchild); } } void BSTree::PostorderTraversal(Node* n) { if (n) { PostorderTraversal(n->lchild); PostorderTraversal(n->rchild); cout << n->data << ","; } } void BSTree::DepthFirstSearch(Node* root) { stack<Node *> nodeStack; nodeStack.push(root); Node* node = NULL; while(!nodeStack.empty()){ node = nodeStack.top(); cout << node->data << ","; nodeStack.pop(); if (node->rchild) { nodeStack.push(node->rchild); } if (node->lchild) { nodeStack.push(node->lchild); } } } void BSTree::BreadthFirstSearch(Node* root) { queue<Node *> nodeQueue; nodeQueue.push(root); Node* node = NULL; while(!nodeQueue.empty()){ node = nodeQueue.front(); nodeQueue.pop(); cout << node->data << ","; if (node->lchild) { nodeQueue.push(node->lchild); } if (node->rchild) { nodeQueue.push(node->rchild); } } } void BSTree::Free(Node* n) { if (n) { Free(n->lchild); Free(n->rchild); delete n; n = NULL; } } // ************************************************************************** // 类的四大函数:构造函数、拷贝构造函数、重载赋值运算符、析构函数 // ************************************************************************** BSTree::BSTree() { m_root = NULL; } BSTree::~BSTree() { Free(m_root); } // ************************************************************************** // 增删改查 // ************************************************************************** void BSTree::Insert(int x) { Node* tmp = new Node(x); if (!m_root){ m_root = tmp; } else{ Node* pre = m_root; Node* cur = m_root; while (cur){ pre = cur; cur = (x < cur->data) ? (cur->lchild) : (cur->rchild); } (x < pre->data) ? (pre->lchild = tmp) : (pre->rchild = tmp); } } unsigned short BSTree::Size() { return CountSize(m_root); } unsigned short BSTree::Deep() { return CountDeep(m_root); } unsigned short BSTree::Leaf() { return CountLeaf(m_root); } bool BSTree::IsEmpty() { return m_root == NULL; } void BSTree::PreorderTraversal() { PreorderTraversal(m_root); cout << endl; } void BSTree::InorderTraversal() { InorderTraversal(m_root); cout << endl; } void BSTree::PostorderTraversal() { PostorderTraversal(m_root); cout << endl; } void BSTree::DepthFirstSearch() { DepthFirstSearch(m_root); cout << endl; } void BSTree::BreadthFirstSearch() { BreadthFirstSearch(m_root); cout << endl; }
// mian.cpp
// test for BSTree #include "BSTree.h" #include <cstdlib> #include <iostream> using namespace std; int main() { BSTree tree; int arr[6] = {5, 4, 8, 1, 7, 10}; for (int i = 0; i < 6; ++i){ tree.Insert(arr[i]); } tree.PreorderTraversal(); tree.InorderTraversal(); tree.PostorderTraversal(); tree.DepthFirstSearch(); tree.BreadthFirstSearch(); cout << "size:" << tree.Size() << endl; cout << "deep:" << tree.Deep() << endl; cout << "leaf:" << tree.Leaf() << endl; system("pause"); return 0; }
// 输出截图
算法与数据结构基础4:C++二叉树实现及遍历方法大全
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。