首页 > 代码库 > Libevent源码分析—event_base_dispatch()

Libevent源码分析—event_base_dispatch()

我们知道libevent是一个Reactor模式的事件驱动的网络库。
 
到目前为止,我们已经看了核心的event和event_base结构体的源码,看了初始化这两个结构体的源码,看了注册event的源码,也将event注册到I/O多路复用监听的事件上了。现在准备工作都做好了,下面就是看运行时的主循环了,在这个主循环中,是如何检测事件、分发事件、调用事件的回调函数的。这一步就是libevent的核心框架流程了。
 
Reactor模式中的Event、Event Handler、Reactor目前都完成了,下面就剩Event Demultiplexer了。
这一步通过event_base_dispatch()完成
intevent_base_dispatch(struct event_base *event_base){  return (event_base_loop(event_base, 0));  //调用event_base_loop()}

可以看到,该函数只是做了调用event_base_loop()这一个动作,所以工作实际是在函数event_base_loop()内完成的。

event_base_loop()

该函数完成以下工作:
1.信号标记被设置,则调用信号的回调函数
2.根据定时器最小时间,设置I/O多路复用的最大等待时间,这样即使没有I/O事件发生,也能在最小定时器超时时返回。
3.调用I/O多路复用,监听事件,将活跃事件添加到活跃事件链表中
4.检查定时事件,将就绪的定时事件从小根堆中删除,插入到活跃事件链表中
5.对event_base的活跃事件链表中的事件,调用event_process_active()函数,在该函数内调用event的回调函数,优先级高的event先处理。
 
该函数内部调用了eventop.dispatch()监听事件,event_sigcb函数指针处理信号事件,timeout_process()将超时的定时事件加入到活跃事件链表中,event_process_active()处理活跃事件链表中的事件,调用相应的回调函数。
intevent_base_loop(struct event_base *base, int flags){    const struct eventop *evsel = base->evsel;    void *evbase = base->evbase;  //event_base的I/O多路复用    struct timeval tv;    struct timeval *tv_p;    int res, done;    /* clear time cache */    //清空时间缓存    base->tv_cache.tv_sec = 0;    //处理Signal事件时,指定信号所属的event_base    if (base->sig.ev_signal_added)        evsignal_base = base;    done = 0;    while (!done) {  //进入事件主循环        /* Terminate the loop if we have been asked to */        //设置event_base的标记,以表明是否需要跳出循环        if (base->event_gotterm) {  //event_loopexit_cb()可设置            base->event_gotterm = 0;            break;        }        if (base->event_break) {  //event_base_loopbreak()可设置            base->event_break = 0;            break;        }        /* You cannot use this interface for multi-threaded apps */        //当event_gotsig被设置时,则event_sigcb就是信号处理的回调函数        while (event_gotsig) {            event_gotsig = 0;            if (event_sigcb) {                res = (*event_sigcb)();  //调用信号处理的回调函数                if (res == -1) {                    errno = EINTR;                    return (-1);                }            }        }        timeout_correct(base, &tv);  //校准时间        tv_p = &tv;        //根据定时器堆中最小超时时间计算I/O多路复用的最大等待时间tv_p        if (!base->event_count_active && !(flags & EVLOOP_NONBLOCK)) {            timeout_next(base, &tv_p);        } else {            /*              * if we have active events, we just poll new events             * without waiting.             */            evutil_timerclear(&tv);        }                /* If we have no events, we just exit */        //没有注册事件,则退出        if (!event_haveevents(base)) {            event_debug(("%s: no events registered.", __func__));            return (1);        }        /* update last old time */        gettime(base, &base->event_tv);        /* clear time cache */        base->tv_cache.tv_sec = 0;        //调用I/O多路复用,监听事件        res = evsel->dispatch(base, evbase, tv_p);        if (res == -1)            return (-1);        //将time cache赋值为当前系统时间        gettime(base, &base->tv_cache);                //检查定时事件,将就绪的定时事件从小根堆中删除,插入到活跃事件链表中        timeout_process(base);        if (base->event_count_active) {            //处理event_base的活跃链表中的事件            //调用event的回调函数,优先级高的event先处理            event_process_active(base);              if (!base->event_count_active && (flags & EVLOOP_ONCE))                done = 1;        } else if (flags & EVLOOP_NONBLOCK)            done = 1;    }    /* clear time cache */    //循环结束,清空时间缓存    base->tv_cache.tv_sec = 0;    event_debug(("%s: asked to terminate loop.", __func__));    return (0);}

epoll_dispatch()

在上面我们看到,event_base_loop()中通过I/O多路复用的dispatch()函数完成监听事件功能。在之前的event_init()中我们看到,通过遍历eventops数组,从中选择一个I/O多路复用机制,所以不同的I/O多路复用机制有不同的eventop结构体,相应的也就有不同的dispatch()函数。下面,再次看下eventop结构体(event-internal.h)
struct eventop {        const char *name;        void *(*init)(struct event_base *);  //初始化        int (*add)(void *, struct event *);  //注册事件        int (*del)(void *, struct event *);  //删除事件        int (*dispatch)(struct event_base *, void *, struct timeval *);  //事件分发        void (*dealloc)(struct event_base *, void *);  //注销,释放资源        /* set if we need to reinitialize the event base */        int need_reinit;};
在event_add()中通过add()成员函数注册event到监听事件中,现在在event_base_loop()中通过dispatch()成员函数监听事件。
libevent支持多种I/O多路复用机制,下面先看下epoll的eventop结构体(epoll.c)
const struct eventop epollops = {    "epoll",    epoll_init,    epoll_add,    epoll_del,    epoll_dispatch,    epoll_dealloc,    1 /* need reinit */};
然后看下epoll的dispatch()函数(epoll.c)
从下面源码可见,epoll_dispatch()的工作主要有:
1.调用epoll_wait()监听事件
2.如果有信号发生,调用evsignal_process()处理信号
3.将活跃的event根据其活跃的类型注册到活跃事件链表上
4.如果events数组大小不够,则重新分配为原来2倍大小
static intepoll_dispatch(struct event_base *base, void *arg, struct timeval *tv){    struct epollop *epollop = arg;    struct epoll_event *events = epollop->events;    struct evepoll *evep;    int i, res, timeout = -1;    if (tv != NULL)        timeout = tv->tv_sec * 1000 + (tv->tv_usec + 999) / 1000;  //转换为微米    if (timeout > MAX_EPOLL_TIMEOUT_MSEC) {  //设置最大超时时间        /* Linux kernels can wait forever if the timeout is too big;         * see comment on MAX_EPOLL_TIMEOUT_MSEC. */        timeout = MAX_EPOLL_TIMEOUT_MSEC;    }    res = epoll_wait(epollop->epfd, events, epollop->nevents, timeout);  //监听事件发生    if (res == -1) {        if (errno != EINTR) {            event_warn("epoll_wait");            return (-1);        }        evsignal_process(base);  //由于Signal事件发生中断,处理Signal事件        return (0);    } else if (base->sig.evsignal_caught) {        evsignal_process(base);  //有Signal事件发生,处理Signal事件    }    event_debug(("%s: epoll_wait reports %d", __func__, res));    for (i = 0; i < res; i++) {  //处理活跃事件        int what = events[i].events;  //活跃类型        struct event *evread = NULL, *evwrite = NULL;        int fd = events[i].data.fd;  //event的文件描述符        if (fd < 0 || fd >= epollop->nfds)            continue;        evep = &epollop->fds[fd];        if (what & (EPOLLHUP|EPOLLERR)) {  //判断epoll的events类型,并找到注册的event            evread = evep->evread;            evwrite = evep->evwrite;        } else {            if (what & EPOLLIN) {                evread = evep->evread;            }            if (what & EPOLLOUT) {                evwrite = evep->evwrite;            }        }        if (!(evread||evwrite))            continue;                //添加event到活跃事件链表中        if (evread != NULL)            event_active(evread, EV_READ, 1);        if (evwrite != NULL)            event_active(evwrite, EV_WRITE, 1);    }    //如果注册的事件全部变为活跃,则增大events数组为原来两倍    if (res == epollop->nevents && epollop->nevents < MAX_NEVENTS) {        /* We used all of the event space this time.  We should           be ready for more events next time. */        int new_nevents = epollop->nevents * 2;        struct epoll_event *new_events;        new_events = realloc(epollop->events,            new_nevents * sizeof(struct epoll_event));        if (new_events) {            epollop->events = new_events;            epollop->nevents = new_nevents;        }    }    return (0);}

event_process_active()

好了,现在活跃的I/O事件、定时器事件已经全部添加到活跃事件链表中了。下面就开始调用这些event的回调函数进行处理了,这步是在event_base_loop()中调用event_process_active()来完成的。
该函数从event_base的activequeueus链表数组上取出一个链表;对该链表上的event调用回调函数;优先调用优先级值最小的event
/* * Active events are stored in priority queues.  Lower priorities are always * process before higher priorities.  Low priority events can starve high * priority ones. */static voidevent_process_active(struct event_base *base){    struct event *ev;    struct event_list *activeq = NULL;    int i;    short ncalls;    for (i = 0; i < base->nactivequeues; ++i) {  //取出第一个活跃链表        if (TAILQ_FIRST(base->activequeues[i]) != NULL) {            activeq = base->activequeues[i];            break;        }    }    assert(activeq != NULL);    //优先处理优先级值最小的event    for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) {        if (ev->ev_events & EV_PERSIST)            event_queue_remove(base, ev, EVLIST_ACTIVE);  //持久事件,则从活跃链表移除        else            event_del(ev);  //不是持久事件,则直接删除该事件                /* Allows deletes to work */        ncalls = ev->ev_ncalls;        ev->ev_pncalls = &ncalls;        while (ncalls) {            ncalls--;            ev->ev_ncalls = ncalls;            //调用该event的回调函数,event.ev_res保存返回值            (*ev->ev_callback)((int)ev->ev_fd, ev->ev_res, ev->ev_arg);              if (event_gotsig || base->event_break) {                  ev->ev_pncalls = NULL;                return;            }        }        ev->ev_pncalls = NULL;    }}

 

Libevent源码分析—event_base_dispatch()