首页 > 代码库 > [UFLDL]多层神经网络的python实现
[UFLDL]多层神经网络的python实现
上周写完了该代码,但是由于没有注意到softmax相关的实现故结果不对,更正后可以得到正确结果,用200幅图片迭代200次可以得到90%以上的正确率,参数设置还有待于优化,另外可以考虑用多线程加速,此处目前还有问题(有待于修改,慎用)。
推导请参考之前的文章http://blog.csdn.net/xuanyuansen/article/details/41214115。
#coding=utf-8 ''' Created on 2014??11??15?? @author: wangshuai13 ''' import numpy #import matplotlib.pyplot as plt import struct import math import random import time import threading class MyThread(threading.Thread): def __init__(self,threadname,tANN,idx_start,idx_end): threading.Thread.__init__(self,name=threadname) self.ANN=tANN self.idx_start=idx_start self.idx_end=idx_end def run(self): cDetaW,cDetaB,cError=self.ANN.backwardPropogation(self.ANN.traindata[self.idx_start],0) for idx in range(self.idx_start+1,self.idx_end): DetaWtemp,DetaBtemp,Errortemp=self.ANN.backwardPropogation(self.ANN.traindata[idx],idx) cError += Errortemp #cDetaW += DetaWtemp #cDetaB += DetaBtemp for idx_W in range(0,len(cDetaW)): cDetaW[idx_W] += DetaWtemp[idx_W] for idx_B in range(0,len(cDetaB)): cDetaB[idx_B] += DetaBtemp[idx_B] return cDetaW,cDetaB,cError def sigmoid(inX): return 1.0/(1.0+math.exp(-inX)) def softmax(inMatrix): m,n=numpy.shape(inMatrix) outMatrix=numpy.mat(numpy.zeros((m,n))) soft_sum=0 for idx in range(0,n): outMatrix[0,idx] = math.exp(inMatrix[0,idx]) soft_sum += outMatrix[0,idx] for idx in range(0,n): outMatrix[0,idx] /= soft_sum return outMatrix def tangenth(inX): return (1.0*math.exp(inX)-1.0*math.exp(-inX))/(1.0*math.exp(inX)+1.0*math.exp(-inX)) def difsigmoid(inX): return sigmoid(inX)*(1.0-sigmoid(inX)) def sigmoidMatrix(inputMatrix): m,n=numpy.shape(inputMatrix) outMatrix=numpy.mat(numpy.zeros((m,n))) for idx_m in range(0,m): for idx_n in range(0,n): outMatrix[idx_m,idx_n]=sigmoid(inputMatrix[idx_m,idx_n]) return outMatrix def loadMNISTimage(absFilePathandName,datanum=60000): images=open(absFilePathandName,'rb') buf=images.read() index=0 magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index) print magic, numImages , numRows , numColumns index += struct.calcsize('>IIII') if magic != 2051: raise Exception datasize=int(784*datanum) datablock=">"+str(datasize)+"B" #nextmatrix=struct.unpack_from('>47040000B' ,buf, index) nextmatrix=struct.unpack_from(datablock ,buf, index) nextmatrix=numpy.array(nextmatrix)/255.0 #nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns) nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns) #for idx in range(0,numImages): # test=nextmatrix[idx,:,:] # print idx,numpy.shape(test) #im = struct.unpack_from('>784B' ,buf, index) #move=struct.calcsize('>784B') #print move #index += struct.calcsize('>784B') #im=numpy.array(im) #im = im.reshape(14,56) #row,col=numpy.shape(im) #print row,col #fig = plt.figure() #plotwindow = fig.add_subplot(111) #plt.imshow(im , cmap='gray') #plt.show() #nextsum=59999*28*28 #print nextsum #nextmatrix=struct.unpack_from('>47039216B' ,buf, index) #nextmatrix=numpy.array(nextmatrix) #nextmatrix=nextmatrix.reshape(59999,28,28) #for idx in range(1,59999): #temp=nextmatrix[idx,:,:] #plt.imshow(temp,cmap='gray') #plt.show() #print temp #print next #for lines in images.readlines(): #print type(lines),lines return nextmatrix, numImages def loadMNISTlabels(absFilePathandName,datanum=60000): labels=open(absFilePathandName,'rb') buf=labels.read() index=0 magic, numLabels = struct.unpack_from('>II' , buf , index) print magic, numLabels index += struct.calcsize('>II') if magic != 2049: raise Exception datablock=">"+str(datanum)+"B" #nextmatrix=struct.unpack_from('>60000B' ,buf, index) nextmatrix=struct.unpack_from(datablock ,buf, index) nextmatrix=numpy.array(nextmatrix) #for idx in range(0,numLabels): # test=nextmatrix[idx] # print idx,type(test),test return nextmatrix, numLabels class MuiltilayerANN(object): #NumofNodesinHiddenlayers should be s list of int def __init__(self,NumofHiddenLayers,NumofNodesinHiddenlayers,inputDimension,outputDimension=1,maxIter=50): self.trainDataNum=200 self.decayRate=0.2 self.punishFactor=0.05 self.eps=0.00001 self.numofhl=NumofHiddenLayers self.Nl=int(NumofHiddenLayers+2) self.NodesinHidden=[] for element in NumofNodesinHiddenlayers: self.NodesinHidden.append(int(element)) #self.B=[] self.inputDi=int(inputDimension) self.outputDi=int(outputDimension) self.maxIteration=int(maxIter) def setTrainDataNum(self,datanum): self.trainDataNum=datanum return def loadtraindata(self,absFilePathandName): self.traindata,self.TotalnumoftrainData=loadMNISTimage(absFilePathandName,self.trainDataNum) #print self.traindata[1] return def loadtrainlabel(self,absFilePathandName): self.trainlabel,self.TotalnumofTrainLabels=loadMNISTlabels(absFilePathandName,self.trainDataNum) if self.TotalnumofTrainLabels != self.TotalnumoftrainData: raise Exception return def initialweights(self): #initial matrix #nodesinLayers is a list self.nodesinLayers=[] self.nodesinLayers.append(int(self.inputDi)) self.nodesinLayers += self.NodesinHidden self.nodesinLayers.append(int(self.outputDi)) #self.nodesinB=[] #self.nodesinB += self.NodesinHidden #self.nodesinB.append(int(self.outputDi)) #for element in self.nodesinLayers: #self.nodesinLayers=int(self.nodesinLayers[idx]) #weight matrix, it's a list and each element is a numpy matrix #weight matrix, here is Wij, and in BP we may inverse it into wji #here we store the matrix as numpy.array self.weightMatrix=[] self.B=[] for idx in range(0,self.Nl-1): #Xaxier's scaling factor #X. Glorot, Y. Bengio. Understanding the difficulty of training #deep feedforward neural networks. AISTATS 2010. s=math.sqrt(6)/math.sqrt(self.nodesinLayers[idx]+self.nodesinLayers[idx+1]) #s=random.uniform(self.nodesinLayers[idx],self.nodesinLayers[idx+1])*2.0*s - s tempMatrix=numpy.zeros((self.nodesinLayers[idx],self.nodesinLayers[idx+1])) for row_m in range(0,self.nodesinLayers[idx]): for col_m in range(0,self.nodesinLayers[idx+1]): tempMatrix[row_m,col_m]=random.random()*2.0*s-s self.weightMatrix.append(numpy.mat(tempMatrix)) self.B.append(numpy.mat(numpy.zeros((1,self.nodesinLayers[idx+1])))) return 0 def printWeightMatrix(self): for idx in range(0,int(self.Nl)-1): print self.weightMatrix[idx] print self.B[idx] return 0 def forwardPropogation(self,singleDataInput,currentDataIdx): #self.tempusedata=inputdata Ztemp=[] #Ztemp.append(numpy.mat(inputdata)*self.weightMatrix[0]+self.B[0]) Ztemp.append(numpy.mat(singleDataInput)*self.weightMatrix[0]+self.B[0]) Atemp=[] #print Ztemp for idx in range(1,self.Nl-1): Atemp.append(sigmoidMatrix(Ztemp[idx-1])) Ztemp.append(Atemp[idx-1]*self.weightMatrix[idx]+self.B[idx]) #print Ztemp Atemp.append(sigmoidMatrix(Ztemp[self.Nl-2])) #store temp error by FP outlabels=numpy.mat(numpy.zeros((1,self.outputDi))) outlabels[0,int(self.trainlabel[currentDataIdx])]=1.0 ##########for test##################### #print Atemp[self.Nl-2] #errorMat=Atemp[self.Nl-2]-outlabels #softmax errorMat=softmax(Atemp[self.Nl-2])-outlabels errorsum=0.0 for idx in range(0,self.outputDi): errorsum += 0.5*((errorMat[0,idx])*(errorMat[0,idx])) return Atemp,Ztemp,errorsum def calThetaNl(self,Anl,Y,Znl): thetaNl=Anl-Y #print "error",thetaNl ################# #for idx in range(0,self.outputDi): #thetaNl[0,idx]=thetaNl[0,idx]*difsigmoid(Znl[0,idx]) return thetaNl def backwardPropogation(self,singleDataInput,currentDataIdx): Atemp,Ztemp,temperror=self.forwardPropogation(numpy.mat(singleDataInput),currentDataIdx) #print "single error",temperror #Theta is stored inverse Theta=[] outlabels=numpy.mat(numpy.zeros((1,self.outputDi))) outlabels[0,int(self.trainlabel[currentDataIdx])]=1.0 #print outlabels thetaNl=self.calThetaNl(Atemp[self.Nl-2], outlabels, Ztemp[self.Nl-2]) #print thetaNl Theta.append(thetaNl) #????????????? for idx in range(1,self.Nl-1): inverseidx=self.Nl-1-idx #print inverseidx thetaLPlus1=Theta[idx-1] WeightL=self.weightMatrix[inverseidx] Zl=Ztemp[inverseidx-1] thetal=thetaLPlus1*WeightL.transpose() #print "thetal temp",thetal row_theta,col_theta=numpy.shape(thetal) if row_theta != 1: raise Exception #print col_theta for idx_col in range(0,col_theta): #print idx_col #print "dif",difsigmoid(Zl[0,idx_col]) thetal[0,idx_col] =thetal[0,idx_col]*difsigmoid(Zl[0,idx_col]) #print thetal Theta.append(thetal) #print Theta #DetaW,DetaB are also stored inverse DetaW=[] DetaB=[] for idx in range(0,self.Nl-2): inverse_idx=self.Nl-2-1-idx ####################################################### #???pay great attention to the deminson of matrix???### ####################################################### #dW=Theta[idx]*Atemp[inverse_idx].transpose() dW=Atemp[inverse_idx].transpose()*Theta[idx] #print dW dB=Theta[idx] DetaW.append(dW) DetaB.append(dB) DetaW.append(singleDataInput.transpose()*Theta[self.Nl-2]) DetaB.append(Theta[self.Nl-2]) #print "DetaW",DetaW #print "DetaB",DetaB return DetaW,DetaB,temperror def updatePara(self,DetaW,DetaB): #update parameters for idx in range(0,self.Nl-1): #print DetaW[idx] #print DetaB[idx] inverse_idx=self.Nl-1-1-idx self.weightMatrix[inverse_idx] -= self.decayRate*((1.0/self.trainDataNum)*DetaW[idx]+self.punishFactor*self.weightMatrix[inverse_idx]) #self.weightMatrix[inverse_idx] -= (self.decayRate*(DetaW[idx]+self.punishFactor*self.weightMatrix[inverse_idx])) self.B[inverse_idx] -= self.decayRate*(1.0/self.trainDataNum)*DetaB[idx] #self.B[inverse_idx] -= self.decayRate*DetaB[idx] #print self.weightMatrix #print self.B def calpunish(self): punishment=0.0 for idx in range(0,self.Nl-1): temp=self.weightMatrix[idx] idx_m,idx_n=numpy.shape(temp) for i_m in range(0,idx_m): for i_n in range(0,idx_n): punishment += temp[i_m,i_n]*temp[i_m,i_n] return 0.5*self.punishFactor*punishment def trainANN(self): Error_old=10000000000.0 iter_idx=0 while iter_idx<self.maxIteration: print "iter num: ",iter_idx,"===============================" iter_idx += 1 cDetaW,cDetaB,cError=self.backwardPropogation(self.traindata[0],0) for idx in range(1,self.trainDataNum): DetaWtemp,DetaBtemp,Errortemp=self.backwardPropogation(self.traindata[idx],idx) cError += Errortemp #cDetaW += DetaWtemp #cDetaB += DetaBtemp for idx_W in range(0,len(cDetaW)): cDetaW[idx_W] += DetaWtemp[idx_W] for idx_B in range(0,len(cDetaB)): cDetaB[idx_B] += DetaBtemp[idx_B] #print "Error",cError cError/=self.trainDataNum cError += self.calpunish() print "old error",Error_old print "new error",cError Error_new=cError if Error_old-Error_new < self.eps: break Error_old=Error_new self.updatePara(cDetaW, cDetaB) return def trainANNwithMultiThread(self): Error_old=10000000000.0 iter_idx=0 while iter_idx<self.maxIteration: print "iter num: ",iter_idx,"===============================" iter_idx += 1 cDetaW,cDetaB,cError=self.backwardPropogation(self.traindata[0],0) segNum=int(self.trainDataNum/3) work1 = MyThread('work1',self,1,segNum) cDetaW1,cDetaB1,cError1=work1.run() work2 = MyThread('work2',self,segNum,int(2*segNum)) cDetaW2,cDetaB2,cError2=work2.run() work3 = MyThread('work3',self,int(2*segNum),self.trainDataNum) cDetaW3,cDetaB3,cError3=work3.run() while work1.isAlive() or work2.isAlive() or work3.isAlive(): time.sleep(0.005) continue cDetaW=cDetaW+cDetaW1+cDetaW2+cDetaW3 cDetaB=cDetaB+cDetaB1+cDetaB2+cDetaB3 cError=cError+cError1+cError2+cError3 cError/=self.trainDataNum cError += self.calpunish() print "old error",Error_old print "new error",cError Error_new=cError if Error_old-Error_new < self.eps: break Error_old=Error_new self.updatePara(cDetaW, cDetaB) return def getTrainAccuracy(self): accuracycount=0 for idx in range(0,self.trainDataNum): Atemp,Ztemp,errorsum=self.forwardPropogation(self.traindata[idx],idx) TrainPredict=Atemp[self.Nl-2] print TrainPredict Plist=TrainPredict.tolist() LabelPredict=Plist[0].index(max(Plist[0])) print "LabelPredict",LabelPredict print "trainLabel",self.trainlabel[idx] if int(LabelPredict) == int(self.trainlabel[idx]): accuracycount += 1 print "accuracy:", float(accuracycount)/float(self.trainDataNum) return
[UFLDL]多层神经网络的python实现
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。