首页 > 代码库 > 【BZOJ4259】 残缺的字符串

【BZOJ4259】 残缺的字符串

Description

很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n。可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺。
你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配?

Input

第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度。
第二行为一个长度为m的字符串A。
第三行为一个长度为n的字符串B。
两个串均仅由小写字母和*号组成,其中*号表示相应位置已经残缺。

Output

第一行包含一个整数k,表示B串中可以完全匹配A串的位置个数。
若k>0,则第二行输出k个正整数,从小到大依次输出每个可以匹配的开头位置(下标从1开始)。

Sample Input

3 7
a*b
aebr*ob

Sample Output

2
1 5

HINT

 

Source

By Claris

Solution

对于每个字母的权值就设为1~26。*的权值设为0。两个字符可以匹配当且仅当A_i∗B_j∗(A_i−B_j )^2等于0。那么我们将这个式子展开,展开以后的每一项分别用FFT计算即可。

技术分享
 1 #include <cstdio> 2 #include <algorithm> 3 #include <cmath> 4 #include <cstring> 5  6 #define R register 7 #define maxn 1048576 8 typedef long double db; 9 const db pi = acosl(-1);10 char A[maxn], B[maxn];11 struct Complex {12     db x, y;13     inline Complex operator - (const Complex &that) const {return (Complex) {x - that.x, y - that.y};}14     inline Complex operator * (const Complex &that) const {return (Complex) {x * that.x - y * that.y, x * that.y + y * that.x};}15     inline void operator += (const Complex &that) {x += that.x; y += that.y;}16 } w[maxn];17 int N;18 void init()19 {20     R int h = N >> 1;21     for (R int i = 0; i < h; ++i) w[i + h] = (Complex) {cos(2 * pi / N * i), sin(2 * pi / N * i)};22     for (R int i = h; i--; ) w[i] = w[i << 1];23 }24 void bit_reverse(R Complex *a, R Complex *b)25 {26     for (R int i = 0; i < N; ++i) b[i] = a[i];27     for (R int i = 0, j = 0; i < N; ++i)28     {29         i > j ? std::swap(b[i], b[j]), 1 : 0;30         for (R int l = N >> 1; (j ^= l) < l; l >>= 1);31     }32 }33 void dft(R Complex *a)34 {35     for (R int l = 2, m = 1; m != N; l <<= 1, m <<= 1)36         for (R int i = 0; i < N; i += l)37             for (R int j = 0; j < m; ++j)38             {39                 R Complex tmp = a[i + j + m] * w[j + m];40                 a[i + j + m] = a[i + j] - tmp;41                 a[i + j] += tmp;42             }43 }44 Complex a[maxn], b[maxn], ta[maxn], tb[maxn], tc[maxn], ans[maxn];45 int aa[maxn], bb[maxn];46 int main()47 {48     R int la, lb;49     scanf("%s%s", A, B);50     la = strlen(A); lb = strlen(B);51     for (N = 1; N < (la + lb); N <<= 1);52     init();53     std::reverse(A, A + la);54     for (R int i = 0; i < la; ++i) A[i] == * ? 0 : aa[i] = A[i] - a + 1;55     for (R int i = 0; i < lb; ++i) B[i] == * ? 0 : bb[i] = B[i] - a + 1;56 57     for (R int i = 0; i < la; ++i) a[i].x = aa[i] * aa[i] * aa[i], a[i].y = 0;58     for (R int i = 0; i < lb; ++i) b[i].x = bb[i], b[i].y = 0;59     bit_reverse(a, ta); bit_reverse(b, tb);60     dft(ta); dft(tb);61     for (R int i = 0; i < N; ++i) ans[i] += (ta[i] * tb[i]);62     63     for (R int i = 0; i < la; ++i) a[i].x = -2 * aa[i] * aa[i], a[i].y = 0;64     for (R int i = 0; i < lb; ++i) b[i].x = bb[i] * bb[i], b[i].y = 0;65     bit_reverse(a, ta); bit_reverse(b, tb);66     dft(ta); dft(tb);67     for (R int i = 0; i < N; ++i) ans[i] += (ta[i] * tb[i]);68     69     for (R int i = 0; i < la; ++i) a[i].x = aa[i], a[i].y = 0;70     for (R int i = 0; i < lb; ++i) b[i].x = bb[i] * bb[i] * bb[i], b[i].y = 0;71     bit_reverse(a, ta); bit_reverse(b, tb);72     dft(ta); dft(tb);73     for (R int i = 0; i < N; ++i) ans[i] += (ta[i] * tb[i]);74     75     std::reverse(ans + 1, ans + N);76     bit_reverse(ans, tc);77     dft(tc);78 //    for (R int i = 0; i < N; ++i) printf("%lf %lf\n", tc[i].x, tc[i].y);79     for (R int i = la - 1; i < lb; ++i) if (fabs(tc[i].x / N) < 0.5) printf("%d ", i - la + 2);80     return 0;81 }82 /*83 399906 399924 399942 399960 399978 39999684 */
FFT

其实这题的数据用bitset是可以水过的。不过可以卡。然后我优化了一发常数就只是最慢的数据本机3s以内了。我把代码放在这里欢迎大家来hack!  O(∩_∩)O~~

技术分享
  1 #include <cstdio>  2 #include <cstring>  3 #include <bitset>  4 #include <algorithm>  5   6 #define R register  7 #define maxn 500010  8 #define maxs 15635  9 //#define inline  10 char A[maxn], B[maxn]; 11 /*inline bool eq(R char a, R char b) 12 { 13     return a == b || a == ‘*‘ || b == ‘*‘; 14 }*/ 15 typedef unsigned uint; 16 int len; 17  18 #define set(v, x) (v[x >> 5] |= 1u << (x & 31)) 19 #define query(v, x) ((1u << (x & 31)) & v[x >> 5]) 20 uint p[26][32][maxs]; 21 uint aph[26][maxs], ans[maxs]; 22 inline void init(R int c) 23 { 24     R uint *t = p[c][0], *tt; 25     for (R int i = 0; i <= len; ++i) t[i] = aph[c][i]; 26     for (R int i = 1; i < 32; ++i) 27     { 28         t = p[c][i]; tt = p[c][i - 1]; 29         for (R int j = 0; j <= len; ++j) 30             t[j] = ((tt[j] >> 1) | ((tt[j + 1] & 1u) << 31)); 31     } 32 } 33 int cnt; 34 inline void bit_and(R int c, R int l) 35 { 36     R int fir = l >> 5; R uint *t = p[c][l & 31]; 37     R int i = fir, j = 0; 38     for (; i + 36 < len; i += 36, j += 36) 39     { 40         ans[j] &= t[i]; 41         ans[j + 1] &= t[i + 1]; 42         ans[j + 2] &= t[i + 2]; 43         ans[j + 3] &= t[i + 3]; 44         ans[j + 4] &= t[i + 4]; 45         ans[j + 5] &= t[i + 5]; 46         ans[j + 6] &= t[i + 6]; 47         ans[j + 7] &= t[i + 7]; 48         ans[j + 8] &= t[i + 8]; 49         ans[j + 9] &= t[i + 9]; 50         ans[j + 10] &= t[i + 10]; 51         ans[j + 11] &= t[i + 11]; 52         ans[j + 12] &= t[i + 12]; 53         ans[j + 13] &= t[i + 13]; 54         ans[j + 14] &= t[i + 14]; 55         ans[j + 15] &= t[i + 15]; 56         ans[j + 16] &= t[i + 16]; 57         ans[j + 17] &= t[i + 17]; 58         ans[j + 18] &= t[i + 18]; 59         ans[j + 19] &= t[i + 19]; 60         ans[j + 20] &= t[i + 20]; 61         ans[j + 21] &= t[i + 21]; 62         ans[j + 22] &= t[i + 22]; 63         ans[j + 23] &= t[i + 23]; 64         ans[j + 24] &= t[i + 24]; 65         ans[j + 25] &= t[i + 25]; 66         ans[j + 26] &= t[i + 26]; 67         ans[j + 27] &= t[i + 27]; 68         ans[j + 28] &= t[i + 28]; 69         ans[j + 29] &= t[i + 29]; 70         ans[j + 30] &= t[i + 30]; 71         ans[j + 31] &= t[i + 31]; 72         ans[j + 32] &= t[i + 32]; 73         ans[j + 33] &= t[i + 33]; 74         ans[j + 34] &= t[i + 34]; 75         ans[j + 35] &= t[i + 35]; 76     } 77     for (; i <= len; ++i, ++j) ans[j] &= t[i]; 78 } 79  80 //std::bitset<maxn> aph[26], ans; 81 int fail[maxn]; 82 int r[maxn]; 83 inline bool cmp(R int a, R int b) {return A[a] < A[b] || (A[a] == A[b] && (a & 31) < (b & 31));} 84 int main() 85 { 86 //    freopen("str.in", "r", stdin); 87 //    freopen("str.out", "w", stdout); 88     scanf("%s%s", A, B); 89     R int la = strlen(A), lb = strlen(B); 90     len = lb >> 5; 91     R int xcnt = 0; 92     for (R int i = 0; i < la; ++i) xcnt += A[i] == *; 93     for (R int i = 0; i < lb; ++i) xcnt += B[i] == *; 94     /*if (!xcnt) 95     { 96         fail[1] = 0; 97         for (R int i = la; i; --i) A[i] = A[i - 1]; 98         for (R int i = lb; i; --i) B[i] = B[i - 1]; 99         for (R int i = 2, p = 0; i <= la; ++i)100         {101             while (p && A[p + 1] != A[i]) p = fail[p];102             A[p + 1] == A[i] ? ++p : 0;103             fail[i] = p;104         }105         for (R int i = 1, p = 0; i <= lb; ++i)106         {107             while (p && A[p + 1] != B[i]) p = fail[p];108             A[p + 1] == B[i] ? ++p : 0;109             if (p == la)110             {111                 printf("%d ", i - la + 1);112                 p = fail[p];113             }114         }115         puts("");116         return 0;117     }*/118     for (R int i = 0; i < lb; ++i)119     {120         if (B[i] != *) set(aph[B[i] - a], i);121         else for (R int j = 0; j < 26; ++j) set(aph[j], i);122         set(ans, i);123     }124     for (R int i = 0; i < 26; ++i) init(i);125 //    fprintf(stderr, "%d %d\n", ‘*‘, ‘a‘);126     for (R int i = 0; i < la; ++i) r[i] = i;127     std::sort(r, r + la, cmp);128     for (R int i = 0; i < la; ++i)129         if (A[r[i]] != *)130             bit_and(A[r[i]] - a, r[i]);131 //            ans &= (aph[A[i] - ‘a‘] >> i);132     for (R int i = 0; i + la - 1 < lb; ++i) if (query(ans, i)) printf("%d ", i + 1); puts("");133     return 0;134 }
bitset

 

 

【BZOJ4259】 残缺的字符串