首页 > 代码库 > poj 1066 题解

poj 1066 题解

技术分享

题意:求从正方体外面到达这个黑点所需穿过的最少线段数(规定只能从线段中点穿过,包括最外层的墙),共有n面墙

0 <= n <= 30

题解:事实上枚举边界上的中点,判断它和黑点的线段与这些墙的交点数即可

解释:注意到,墙这一长线段相对于黑点连线,等价于直线——无论是在实现上还是题意上。连线若与墙相交,则黑点与枚举点必在墙两侧,无可避免地要穿过这面墙,至于从线段中点穿过在本题中是没有意义的。起始点选取本该在线段中点,但显然选取两个端点的最小值不会比它差,而一个端点的结果不会比相邻的两个中点结果好,所以枚举端点即可。

实现注意点:判断时用line_cross_segment即可,判断时使用规范相交,记得加上初始穿过边界所需的1次

 

事实上我的第一想法是枚举出所有线段的中点,再用相交判断合法边,用一次bfs搜出最短路,显然麻烦又没有好好利用题目性质,但暂且先写下这个思路。

 

 

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

#define rep(i,a,b) for (int i=a;i<=b;++i)

const double eps=1e-7;

struct point{
    double x,y;
    point(){}
    point (double a,double b): x(a),y(b) {}

    friend point operator + (const point &a,const point &b){
        return point(a.x+b.x,a.y+b.y);
    }

    friend point operator - (const point &a,const point &b){
        return point(a.x-b.x,a.y-b.y);
    }

    friend point operator * (const double &r,const point &a){
        return point(r*a.x,r*a.y);
    }

    friend bool operator == (const point &a,const point &b){
        return (abs(a.x-b.x)<eps && abs(a.y-b.y)<eps);
    }

    double norm(){
        return sqrt(x*x+y*y);
    }
};

inline double det(point a,point b) {return a.x*b.y-a.y*b.x;}

inline bool line_cross_segment(point s,point t,point a,point b)
{
    return det(s-a,t-a)*det(s-b,t-b)<-eps;
}

int n,tot,x,y;
point s[50],t[50],goal;
int ans,temp;

int check(point a,point b)
{
    int temp=0;
    rep(i,1,n)
        if (line_cross_segment(s[i],t[i],a,b)) ++temp;
    return temp;
}

int main()
{
    scanf("%d",&n);
    rep(i,1,n) scanf("%lf%lf%lf%lf",&s[i].x,&s[i].y,&t[i].x,&t[i].y);
    ans=100000;
    scanf("%lf%lf",&goal.x,&goal.y);
    rep(i,1,n)
    {
        ans=min(ans,check(s[i],goal));
        ans=min(ans,check(t[i],goal));
    }
    if (n==0) ans=0;
    printf("Number of doors = %d\n",ans+1);
    return 0;
}

 

poj 1066 题解