首页 > 代码库 > 15. 3Sum

15. 3Sum

Problem statement:

Given an array S of n integers, are there elements abc in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note: The solution set must not contain duplicate triplets.

For example, given array S = [-1, 0, 1, 2, -1, -4],A solution set is:[  [-1, 0, 1],  [-1, -1, 2]]

Solution:

Which is different with 1. Two Sum, this question just need all three numbers whose sum is 0.

The basic idea:

  • Sort this array by ascending order.
  • Loop from the first element in array. it becomes a two sum problem. For i element, we should find two elements from rest of the array whose sum is -nums[i].

NOTE: In order to remove the duplicate element, we do duplication check when update the new value for the index, left and right pointers.

Time complexity O(n * n). Space complexity is O(1).

class Solution {public:    vector<vector<int>> threeSum(vector<int>& nums) {        sort(nums.begin(), nums.end());        vector<vector<int>> triplet;        // get the size of the array and convert it to integer type        int size = nums.size();        for(int i = 0; i < size - 1; i++){            int left = i + 1;            int right = size - 1;            while(left < right){                // no need do duplicate check                // For the same number, it will do same operation until it changes                if(nums[left] + nums[right] == -nums[i]){                    triplet.push_back({nums[i], nums[left], nums[right]});                    // check for duplicated                    while(left < right && left + 1 < size && nums[left] == nums[left + 1]){                        left++;                    }                    // check for duplicated                    while(left < right && right - 1 >= 0 && nums[right - 1] == nums[right]){                        right--;                    }                    // normal pointers move                    left++;                    right--;                } else if (nums[left] + nums[right] > -nums[i]) {                    right--;                } else {                    left++;                }            }            // remove duplicate candidates            while(i + 1 < size && nums[i] == nums[i + 1]){                i++;            }        }        return triplet;    }};

 

15. 3Sum