首页 > 代码库 > 【LeetCode】Clone Graph (2 solutions)

【LeetCode】Clone Graph (2 solutions)

Clone Graph

Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.


OJ‘s undirected graph serialization:

Nodes are labeled uniquely.

We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.

 

As an example, consider the serialized graph {0,1,2#1,2#2,2}.

The graph has a total of three nodes, and therefore contains three parts as separated by #.

  1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
  2. Second node is labeled as 1. Connect node 1 to node 2.
  3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

 

Visually, the graph looks like the following:

       1      /      /       0 --- 2         /          \_/

这题只需一边遍历一遍复制就可以了。

因此至少可以用三种方法:

1、广度优先遍历(BFS)

2、深度优先遍历(DFS)

2.1、递归

2.2、非递归

 

解法一:广度优先遍历

变量说明:

hash表m用来保存原图结点与克隆结点的对应关系。

hash表f用来记录已经访问过的原图结点,防止循环访问。

队列q用于记录深度优先遍历的层次信息。

/** * Definition for undirected graph. * struct UndirectedGraphNode { *     int label; *     vector<UndirectedGraphNode *> neighbors; *     UndirectedGraphNode(int x) : label(x) {}; * }; */class Solution {public:    UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node)     {        if(node == NULL)            return NULL;                    map<UndirectedGraphNode *, UndirectedGraphNode *> m; //record the <original node, clone node> pairs        map<UndirectedGraphNode *, bool> f; //record original nodes that have been dealt with        queue<UndirectedGraphNode *> q; //BFS, q store the original node        UndirectedGraphNode *nodeClone = new UndirectedGraphNode(node->label);        m[node] = nodeClone;  //add <node, ret> to map        q.push(node);        f[node] = true;                while(!q.empty())        {            UndirectedGraphNode *temp = q.front();  //original node            UndirectedGraphNode *tempClone = (m.find(temp))->second;   //clone node            q.pop();            for(vector<UndirectedGraphNode *>::size_type st = 0; st < temp->neighbors.size(); st ++)            {//add neighbors of temp to the queue                UndirectedGraphNode *neighbor = temp->neighbors[st];                map<UndirectedGraphNode *, bool>::iterator itf = f.find(neighbor);                if(itf == f.end())                {                    f[neighbor] = true;                    q.push(neighbor);                }                map<UndirectedGraphNode *, UndirectedGraphNode *>::iterator it = m.find(neighbor);                                UndirectedGraphNode *neighborClone;                if(it == m.end())                {//neighbors[st] not constructed yet                    neighborClone = new UndirectedGraphNode(neighbor->label);                    m[neighbor] = neighborClone;                }                else                    neighborClone = it->second;                                    //connect neighbor to tempClone                tempClone->neighbors.push_back(neighborClone);            }        }        return nodeClone;    }};

 

解法二:递归深度优先遍历(DFS)

/** * Definition for undirected graph. * struct UndirectedGraphNode { *     int label; *     vector<UndirectedGraphNode *> neighbors; *     UndirectedGraphNode(int x) : label(x) {}; * }; */class Solution {public:    map<UndirectedGraphNode *, UndirectedGraphNode *> f;        UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node)     {        if(node == NULL)            return NULL;                map<UndirectedGraphNode *, UndirectedGraphNode *>::iterator it = f.find(node);        if(it != f.end())   //if node is visited, just return the recorded nodeClone            return f[node];                    UndirectedGraphNode *nodeClone = new UndirectedGraphNode(node->label);        f[node] = nodeClone;        for(vector<UndirectedGraphNode *>::size_type st = 0; st < node->neighbors.size(); st ++)        {            UndirectedGraphNode *temp = cloneGraph(node->neighbors[st]);            if(temp != NULL)                nodeClone->neighbors.push_back(temp);        }        return nodeClone;    }};

【LeetCode】Clone Graph (2 solutions)