首页 > 代码库 > JobTracker作业调度分析
JobTracker作业调度分析
JobTracker的作业调度给我感觉就是比较宏观意义上的操作。倘若你只了解了MapReduce的工作原理是远远不够的,这时去学习一下他在宏观层面的原理实现也是对我们非常有帮助的。首先我们又得从上次分析的任务提交之后的操作说起,Job作业通过RPC通信提交到JobTracker端之后,接下来会触发到下面的方法;
/** * 初始化作业操作 */ public void initJob(JobInProgress job) { if (null == job) { LOG.info("Init on null job is not valid"); return; } try { JobStatus prevStatus = (JobStatus)job.getStatus().clone(); LOG.info("Initializing " + job.getJobID()); //初始化Task任务 job.initTasks(); ......接着会执行initTasks的方法,但不是JobTracker,而是JobInProgress类中的方法:
/** * Construct the splits, etc. This is invoked from an async * thread so that split-computation doesn't block anyone. */ public synchronized void initTasks() throws IOException, KillInterruptedException, UnknownHostException { if (tasksInited || isComplete()) { return; } ...... jobtracker.getInstrumentation().addWaitingMaps(getJobID(), numMapTasks); jobtracker.getInstrumentation().addWaitingReduces(getJobID(), numReduceTasks); this.queueMetrics.addWaitingMaps(getJobID(), numMapTasks); this.queueMetrics.addWaitingReduces(getJobID(), numReduceTasks); //根据numMapTasks任务数,创建MapTask的总数 maps = new TaskInProgress[numMapTasks]; for(int i=0; i < numMapTasks; ++i) { inputLength += splits[i].getInputDataLength(); maps[i] = new TaskInProgress(jobId, jobFile, splits[i], jobtracker, conf, this, i, numSlotsPerMap); } ...... // // Create reduce tasks //根据numReduceTasks,创建Reduce的Task数量 this.reduces = new TaskInProgress[numReduceTasks]; for (int i = 0; i < numReduceTasks; i++) { reduces[i] = new TaskInProgress(jobId, jobFile, numMapTasks, i, jobtracker, conf, this, numSlotsPerReduce); nonRunningReduces.add(reduces[i]); } ...... // create cleanup two cleanup tips, one map and one reduce. //创建2个clean up Task任务,1个是Map Clean-Up Task,一个是Reduce Clean-Up Task cleanup = new TaskInProgress[2]; // cleanup map tip. This map doesn't use any splits. Just assign an empty // split. TaskSplitMetaInfo emptySplit = JobSplit.EMPTY_TASK_SPLIT; cleanup[0] = new TaskInProgress(jobId, jobFile, emptySplit, jobtracker, conf, this, numMapTasks, 1); cleanup[0].setJobCleanupTask(); // cleanup reduce tip. cleanup[1] = new TaskInProgress(jobId, jobFile, numMapTasks, numReduceTasks, jobtracker, conf, this, 1); cleanup[1].setJobCleanupTask(); // create two setup tips, one map and one reduce. //原理同上 setup = new TaskInProgress[2]; // setup map tip. This map doesn't use any split. Just assign an empty // split. setup[0] = new TaskInProgress(jobId, jobFile, emptySplit, jobtracker, conf, this, numMapTasks + 1, 1); setup[0].setJobSetupTask(); // setup reduce tip. setup[1] = new TaskInProgress(jobId, jobFile, numMapTasks, numReduceTasks + 1, jobtracker, conf, this, 1); setup[1].setJobSetupTask(); ......可以看见,在这里JobInProgress首次被划分为了很多的小的Task任务的形式存在,而这些小的任务是以TaskInProgress的类表示。在这里MapReduce把1个作业做出了如下的分解,numMapTasks个Map Task ,numReduceTasks个Reduce Task,2个CleanUp任务,2个SetUp任务,(Map Reduce,每个各占1个),好,可以大致勾画一下,1个JobInProgress的执行流程了。
ok,initTask的任务已经完成,也就是说前面初始化的准备工作都已经完成了,后面就等着JobTacker分配作业给TaskTracker了。在这里MapReduce用的是HeartBeat的形式,就是心跳机制,心跳包在这里主要有3个作用:
1.判断TaskTracker是否活着
2.获取各个TaskTracker上的资源使用情况和任务的进度
3.给TaskTracker分配任务
而这里用到的就是第三作用。HeartBeat的调用形式同样是Hadoop自带的RPC实现方式。JobTracker不会直接分配作业给TaskTracker,中间会经过一个叫TaskScheduler掉调度器,这个可以用户自定义实现,满足不同的需求设计,在Hadoop中有默认的实现,所以你会看到大致这样的一个模型流程:
所以接下来JobTracker首先会收到很多来自TaskTracker的心跳包,判断此TaskTracker是否是无任务状态的,无任务的话,马上让TaskSchedulera分配任务给他:
public synchronized HeartbeatResponse heartbeat(TaskTrackerStatus status, boolean restarted, boolean initialContact, boolean acceptNewTasks, short responseId) throws IOException { .... //通过心跳机制发送命令回应 // Initialize the response to be sent for the heartbeat HeartbeatResponse response = new HeartbeatResponse(newResponseId, null); List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>(); boolean isBlacklisted = faultyTrackers.isBlacklisted(status.getHost()); // Check for new tasks to be executed on the tasktracker if (recoveryManager.shouldSchedule() && acceptNewTasks && !isBlacklisted) { TaskTrackerStatus taskTrackerStatus = getTaskTrackerStatus(trackerName); if (taskTrackerStatus == null) { LOG.warn("Unknown task tracker polling; ignoring: " + trackerName); } else { List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus); //说明此TaskTtracker上无任务了 if (tasks == null ) { //为此TaskTracker分配任务 tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName)); }接下来就是TaskScheduler的方法了,不过得找出他的实现类,TaskScheduler只是一个基类:
public synchronized List<Task> assignTasks(TaskTracker taskTracker) throws IOException { TaskTrackerStatus taskTrackerStatus = taskTracker.getStatus(); ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus(); final int numTaskTrackers = clusterStatus.getTaskTrackers(); final int clusterMapCapacity = clusterStatus.getMaxMapTasks(); final int clusterReduceCapacity = clusterStatus.getMaxReduceTasks(); //获取作业队列 Collection<JobInProgress> jobQueue = jobQueueJobInProgressListener.getJobQueue(); ..... for (JobInProgress job : jobQueue) { if (job.getStatus().getRunState() != JobStatus.RUNNING || job.numReduceTasks == 0) { continue; } //在这里分配了一个新的Reduce任务 Task t = job.obtainNewReduceTask(taskTrackerStatus, numTaskTrackers, taskTrackerManager.getNumberOfUniqueHosts() ); .....首先获取一个作业列表,在里面挑出一个作业给,在比如从里面挑出1个Reduce的任务区给整个TaskTracker执行,因为我们刚刚已经知道,所有的Task都是以TaskInProgress形式被包含于JobInProgress中的,所以又来到了JobInProgress中了
/** * Return a ReduceTask, if appropriate, to run on the given tasktracker. * We don't have cache-sensitivity for reduce tasks, as they * work on temporary MapRed files. */ public synchronized Task obtainNewReduceTask(TaskTrackerStatus tts, int clusterSize, int numUniqueHosts ) throws IOException { ..... int target = findNewReduceTask(tts, clusterSize, numUniqueHosts, status.reduceProgress()); if (target == -1) { return null; } //这里继续调用方法,获取目标任务 Task result = reduces[target].getTaskToRun(tts.getTrackerName()); if (result != null) { addRunningTaskToTIP(reduces[target], result.getTaskID(), tts, true); } return result; }此时就执行了一个TIP就是TaskInProgress里面去执行了,此时的转变就是JIP->TIP的转变。继续往里看,这时候来到的是TaskInProgress的类里面了:
public Task getTaskToRun(String taskTracker) throws IOException { if (0 == execStartTime){ // assume task starts running now execStartTime = jobtracker.getClock().getTime(); } // Create the 'taskid'; do not count the 'killed' tasks against the job! TaskAttemptID taskid = null; if (nextTaskId < (MAX_TASK_EXECS + maxTaskAttempts + numKilledTasks)) { // Make sure that the attempts are unqiue across restarts int attemptId = job.getNumRestarts() * NUM_ATTEMPTS_PER_RESTART + nextTaskId; //启动一次TA尝试 taskid = new TaskAttemptID( id, attemptId); ++nextTaskId; } else { LOG.warn("Exceeded limit of " + (MAX_TASK_EXECS + maxTaskAttempts) + " (plus " + numKilledTasks + " killed)" + " attempts for the tip '" + getTIPId() + "'"); return null; } //加入到相应的数据结构中 return addRunningTask(taskid, taskTracker); }在这里明显的执行了所谓的TA尝试,就是说这是一次Task的尝试执行,因为不能保证这次任务就一定能执行成功。把这次尝试的任务ID加入系统变量中,就来到了addRunningTask,也就是说来到了方法执行的最末尾:
/** * Adds a previously running task to this tip. This is used in case of * jobtracker restarts. * 添加任务 */ public Task addRunningTask(TaskAttemptID taskid, String taskTracker, boolean taskCleanup) { ..... //添加任务和taskTracker的映射关系 activeTasks.put(taskid, taskTracker); tasks.add(taskid); // Ask JobTracker to note that the task exists //在JobTracker中增加一对任务记录 jobtracker.createTaskEntry(taskid, taskTracker, this); // check and set the first attempt if (firstTaskId == null) { firstTaskId = taskid; } return t; }在这里,就增加了任务和TaskTracker的一些任务运行信息的变量关系。后面就等着TaskTracker自己去把任务挑出来,执行就OK了,上面这个步骤从TIP->TA的转变。我们把这种结构流程叫做“三层多叉树”的方式结构。
整个作业的调度的时序关系图如下:
JobTracker作业调度分析
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。