首页 > 代码库 > 德莱联盟 计算几何 线段相交
德莱联盟 计算几何 线段相交
难度:1
- 描述
-
欢迎来到德莱联盟。。。。
德莱文。。。
德莱文在逃跑,卡兹克在追。。。。
我们知道德莱文的起点和终点坐标,我们也知道卡兹克的起点和 终点坐标,问:卡兹克有可能和德莱文相遇吗?,并且保证他们走的都是直线。
- 输入
- 几组数据,一个整数T表示T组数据
每组数据 8个实数,分别表示德莱文的起点和终点坐标,以及卡兹克的起点和终点坐标 - 输出
- 如果可能 输出 Interseetion,否则输出 Not Interseetion
- 样例输入
-
2 -19.74 7.14 22.23 -27.45 -38.79 -5.08 47.51 34.01 -8.61 9.91 -32.47 6.47 -3.81 -16.1 7.82 -6.37
- 样例输出
-
Interseetion Not Interseetion
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<sstream> #include<algorithm> #include<queue> #include<deque> #include<iomanip> #include<vector> #include<cmath> #include<map> #include<stack> #include<set> #include<fstream> #include<memory> #include<list> #include<string> using namespace std; typedef long long LL; typedef unsigned long long ULL; #define MAXN 2000000003 #define N 21 #define MOD 1000000 #define INF 1000000009 //#define eps 0.00000001 const double PI = acos(-1.0); double torad(double deg) { return deg / 180 * PI; } struct Point { double x, y; Point(double x = 0, double y = 0) :x(x), y(y) { } }; typedef Point Vector; Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (const Point& A, const Point& B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (const Vector& A, double p) { return Vector(A.x / p, A.y / p); } bool operator < (const Point& a, const Point& b) //结构体运算符的重载 { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-8; int dcmp(double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } //基本运算: double dist(const Vector& A, const Vector& B) { return sqrt(pow(A.x - B.x, 2) + pow(A.y - B.y, 2)); } double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }//点乘 double Length(const Vector& A) { return sqrt(Dot(A, A)); } double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }//叉乘 double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); } //向量旋转 rad是弧度 Vector Rotate(const Vector& A, double rad) { return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); } //点和直线: //两直线的交点 Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v*t; } //点到直线的距离 double DistanceToLine(const Point& P, const Point& A, const Point& B) { Vector v1 = B - A, v2 = P - A; return fabs(Cross(v1, v2)) / Length(v1); } //点到线段的距离 double DistanceToSegment(const Point& P, const Point& A, const Point& B) { if (A == B) return Length(P - A); Vector v1 = B - A, v2 = P - A, v3 = P - B; if (dcmp(Dot(v1, v2)) < 0) return Length(v2); else if (dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } //点在直线上的投影 Point GetLineProjection(const Point &P, const Point &A, const Point &B) { Vector v = B - A; return A + v*(Dot(v, P - A) / Dot(v, v)); } //线段相交判定 bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; } //判断点在线段上(两个端点除外) bool OnSegment(const Point& p, const Point& a1, const Point& a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; } int main() { Vector a, b, c, d; int T; scanf("%d", &T); while (T--) { cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y >> d.x >> d.y; if (SegmentProperIntersection(a, b, c, d)) printf("Interseetion\n"); else printf("Not Interseetion\n"); } return 0; }
德莱联盟 计算几何 线段相交
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。