首页 > 代码库 > 一元四次方程求解C++实现

一元四次方程求解C++实现

用到了一元二次方程,一元三次方程的求解.

class QuarticRealPolynomial

{

public:

    static Number computeDiscriminant(Number a, Number b, Number c, Number d, Number e);

    static std::vector<Number> computeRealRoots(Number a, Number b, Number c, Number d, Number e);
private:
    static std::vector<Number> original(Number a3, Number a2, Number a1, Number a0);
    static std::vector<Number> neumark(Number a3, Number a2, Number a1, Number a0);

};

---------------------------------------------

    Number QuarticRealPolynomial::computeDiscriminant(Number a, Number b, Number c, Number d, Number e)
    {
        Number a2 = a * a;
        Number a3 = a2 * a;
        Number b2 = b * b;
        Number b3 = b2 * b;
        Number c2 = c * c;
        Number c3 = c2 * c;
        Number d2 = d * d;
        Number d3 = d2 * d;
        Number e2 = e * e;
        Number e3 = e2 * e;

        Number discriminant = (b2 * c2 * d2 - 4.0 * b3 * d3 - 4.0 * a * c3 * d2 + 18 * a * b * c * d3 - 27.0 * a2 * d2 * d2 + 256.0 * a3 * e3) +
            e * (18.0 * b3 * c * d - 4.0 * b2 * c3 + 16.0 * a * c2 * c2 - 80.0 * a * b * c2 * d - 6.0 * a * b2 * d2 + 144.0 * a2 * c * d2) +
            e2 * (144.0 * a * b2 * c - 27.0 * b2 * b2 - 128.0 * a2 * c2 - 192.0 * a2 * b * d);
        return discriminant;
    }

   std::vector<Number> QuarticRealPolynomial::computeRealRoots(Number a, Number b, Number c, Number d, Number e)
    {

        if (std::abs(a) < CesiumMath::_EPSILON15)
        {
            return CubicRealPolynomial::computeRealRoots(b, c, d, e);
        }
        Number a3 = b / a;
        Number a2 = c / a;
        Number a1 = d / a;
        Number a0 = e / a;

        int k = (a3 < 0.0) ? 1 : 0;
        k += (a2 < 0.0) ? k + 1 : k;
        k += (a1 < 0.0) ? k + 1 : k;
        k += (a0 < 0.0) ? k + 1 : k;

        switch (k)
        {
        case 0:
            return original(a3, a2, a1, a0);
        case 1:
            return neumark(a3, a2, a1, a0);
        case 2:
            return neumark(a3, a2, a1, a0);
        case 3:
            return original(a3, a2, a1, a0);
        case 4:
            return original(a3, a2, a1, a0);
        case 5:
            return neumark(a3, a2, a1, a0);
        case 6:
            return original(a3, a2, a1, a0);
        case 7:
            return original(a3, a2, a1, a0);
        case 8:
            return neumark(a3, a2, a1, a0);
        case 9:
            return original(a3, a2, a1, a0);
        case 10:
            return original(a3, a2, a1, a0);
        case 11:
            return neumark(a3, a2, a1, a0);
        case 12:
            return original(a3, a2, a1, a0);
        case 13:
            return original(a3, a2, a1, a0);
        case 14:
            return original(a3, a2, a1, a0);
        case 15:
            return original(a3, a2, a1, a0);
        default:
            std::vector<Number> results;
            return results;
        }
    }

    std::vector<Number> QuarticRealPolynomial::original(Number a3, Number a2, Number a1, Number a0)
    {
        std::vector<Number> resultRoots;

        Number a3Squared = a3 * a3;

        Number p = a2 - 3.0 * a3Squared / 8.0;
        Number q = a1 - a2 * a3 / 2.0 + a3Squared * a3 / 8.0;
        Number r = a0 - a1 * a3 / 4.0 + a2 * a3Squared / 16.0 - 3.0 * a3Squared * a3Squared / 256.0;

        // Find the roots of the cubic equations:  h^6 + 2 p h^4 + (p^2 - 4 r) h^2 - q^2 = 0.
        std::vector<Number> cubicRoots = CubicRealPolynomial::computeRealRoots(1.0, 2.0 * p, p * p - 4.0 * r, -q * q);

        if (cubicRoots.size() > 0)
        {
            Number temp = -a3 / 4.0;

            // Use the largest positive root.
            Number hSquared = cubicRoots[cubicRoots.size() - 1];

            if (std::abs(hSquared) < CesiumMath::_EPSILON14) {
                // y^4 + p y^2 + r = 0.
                std::vector<Number> roots;
                QuadraticRealPolynomial::computeRealRoots(1.0, p, r, roots);

                if (roots.size() == 2) {
                    Number root0 = roots[0];
                    Number root1 = roots[1];

                    Number y;
                    if (root0 >= 0.0 && root1 >= 0.0) {
                        Number y0 = std::sqrt(root0);
                        Number y1 = std::sqrt(root1);

                        resultRoots.push_back(temp - y1);
                        resultRoots.push_back(temp - y0);
                        resultRoots.push_back(temp + y0);
                        resultRoots.push_back(temp + y1);

                        return resultRoots;
                    } else if (root0 >= 0.0 && root1 < 0.0)
                    {
                        y = std::sqrt(root0);
                        resultRoots.push_back(temp - y);
                        resultRoots.push_back(temp + y);
                        return resultRoots;

                    } else if (root0 < 0.0 && root1 >= 0.0)
                    {
                        y = std::sqrt(root1);
                        resultRoots.push_back(temp - y);
                        resultRoots.push_back(temp + y);
                        return resultRoots;
                    }
                }
                return resultRoots;
            } else if (hSquared > 0.0)
            {
                Number h = std::sqrt(hSquared);

                Number m = (p + hSquared - q / h) / 2.0;
                Number n = (p + hSquared + q / h) / 2.0;

                // Now solve the two quadratic factors:  (y^2 + h y + m)(y^2 - h y + n);
                std::vector<Number> roots1;
                QuadraticRealPolynomial::computeRealRoots(1.0, h, m, roots1);
                std::vector<Number> roots2;
                QuadraticRealPolynomial::computeRealRoots(1.0, -h, n, roots2);

                if (roots1.size() != 0)
                {
                    roots1[0] += temp;
                    roots1[1] += temp;

                    if (roots2.size() != 0)
                    {
                        roots2[0] += temp;
                        roots2[1] += temp;

                        if (roots1[1] <= roots2[0])
                        {
                            resultRoots.push_back(roots1[0]);
                            resultRoots.push_back(roots1[1]);
                            resultRoots.push_back(roots2[0]);
                            resultRoots.push_back(roots2[1]);
                            return resultRoots;
                        }
                        else if (roots2[1] <= roots1[0])
                        {
                            resultRoots.push_back(roots2[0]);
                            resultRoots.push_back(roots2[1]);
                            resultRoots.push_back(roots1[0]);
                            resultRoots.push_back(roots1[1]);
                            return resultRoots;

                        }
                        else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1])
                        {
                            resultRoots.push_back(roots2[0]);
                            resultRoots.push_back(roots1[0]);
                            resultRoots.push_back(roots1[1]);
                            resultRoots.push_back(roots2[1]);
                            return resultRoots;
                        }
                        else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1])
                        {
                            resultRoots.push_back(roots1[0]);
                            resultRoots.push_back(roots2[0]);
                            resultRoots.push_back(roots2[1]);
                            resultRoots.push_back(roots1[1]);
                            return resultRoots;
                        }
                        else if (roots1[0] > roots2[0] && roots1[0] < roots2[1])
                        {
                            resultRoots.push_back(roots2[0]);
                            resultRoots.push_back(roots1[0]);
                            resultRoots.push_back(roots2[1]);
                            resultRoots.push_back(roots1[1]);
                            return resultRoots;
                        }
                        resultRoots.push_back(roots1[0]);
                        resultRoots.push_back(roots2[0]);
                        resultRoots.push_back(roots1[1]);
                        resultRoots.push_back(roots2[1]);
                        return resultRoots;
                    }
                    return roots1;
                }

                if (roots2.size() != 0) {
                    roots2[0] += temp;
                    roots2[1] += temp;

                    return roots2;
                }
                resultRoots.clear();
                return resultRoots;
            }
        }
        resultRoots.clear();
        return resultRoots;

    }

    std::vector<Number> QuarticRealPolynomial::neumark(Number a3, Number a2, Number a1, Number a0)
    {
        std::vector<Number> resultRoots;

        Number a1Squared = a1 * a1;
        Number a2Squared = a2 * a2;
        Number a3Squared = a3 * a3;

        Number p = -2.0 * a2;
        Number q = a1 * a3 + a2Squared - 4.0 * a0;
        Number r = a3Squared * a0 - a1 * a2 * a3 + a1Squared;

        std::vector<Number> cubicRoots = CubicRealPolynomial::computeRealRoots(1.0, p, q, r);

        if (cubicRoots.size() > 0) {
            // Use the most positive root
            Number y = cubicRoots[0];

            Number temp = (a2 - y);
            Number tempSquared = temp * temp;

            Number g1 = a3 / 2.0;
            Number h1 = temp / 2.0;

            Number m = tempSquared - 4.0 * a0;
            Number mError = tempSquared + 4.0 * std::abs(a0);

            Number n = a3Squared - 4.0 * y;
            Number nError = a3Squared + 4.0 * std::abs(y);

            Number g2;
            Number h2;

            if (y < 0.0 || (m * nError < n * mError)) {
                Number squareRootOfN = std::sqrt(n);
                g2 = squareRootOfN / 2.0;
                h2 = squareRootOfN == 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfN;
            } else {
                Number squareRootOfM = std::sqrt(m);
                g2 = squareRootOfM == 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfM;
                h2 = squareRootOfM / 2.0;
            }

            Number G;
            Number g;
            if (g1 == 0.0 && g2 == 0.0) {
                G = 0.0;
                g = 0.0;
            } else if (CesiumMath::sign(g1) == CesiumMath::sign(g2)) {
                G = g1 + g2;
                g = y / G;
            } else {
                g = g1 - g2;
                G = y / g;
            }

            Number H;
            Number h;
            if (h1 == 0.0 && h2 == 0.0) {
                H = 0.0;
                h = 0.0;
            } else if (CesiumMath::sign(h1) == CesiumMath::sign(h2))
            {
                H = h1 + h2;
                h = a0 / H;
            } else {
                h = h1 - h2;
                H = a0 / h;
            }

            // Now solve the two quadratic factors:  (y^2 + G y + H)(y^2 + g y + h);
            std::vector<Number> roots1;
            QuadraticRealPolynomial::computeRealRoots(1.0, G, H, roots1);
            std::vector<Number> roots2;
            QuadraticRealPolynomial::computeRealRoots(1.0, g, h, roots2);

            if (roots1.size() != 0)
            {
                if (roots2.size() != 0) {
                    if (roots1[1] <= roots2[0])
                    {
                        resultRoots.push_back(roots1[0]);
                        resultRoots.push_back(roots1[1]);
                        resultRoots.push_back(roots2[0]);
                        resultRoots.push_back(roots2[1]);

                        return resultRoots;
                    } else if (roots2[1] <= roots1[0])
                    {
                        resultRoots.push_back(roots2[0]);
                        resultRoots.push_back(roots2[1]);
                        resultRoots.push_back(roots1[0]);
                        resultRoots.push_back(roots1[1]);

                        return resultRoots;
                    } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1])
                    {
                        resultRoots.push_back(roots2[0]);
                        resultRoots.push_back(roots1[0]);
                        resultRoots.push_back(roots1[1]);
                        resultRoots.push_back(roots2[1]);

                        return resultRoots;
                    } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1])
                    {
                        resultRoots.push_back(roots1[0]);
                        resultRoots.push_back(roots2[0]);
                        resultRoots.push_back(roots2[1]);
                        resultRoots.push_back(roots1[1]);

                        return resultRoots;
                    } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1])
                    {
                        resultRoots.push_back(roots2[0]);
                        resultRoots.push_back(roots1[0]);
                        resultRoots.push_back(roots2[1]);
                        resultRoots.push_back(roots1[1]);

                        return resultRoots;
                    } else
                    {
                        resultRoots.push_back(roots1[0]);
                        resultRoots.push_back(roots2[0]);
                        resultRoots.push_back(roots1[1]);
                        resultRoots.push_back(roots2[1]);

                        return resultRoots;
                    }
                }
                return roots1;
            }
            if (roots2.size() != 0)
            {
                return roots2;
            }
        }
        resultRoots.clear();
        return resultRoots;
    }


一元四次方程求解C++实现