首页 > 代码库 > nltp APP-分析买家评论的评分-高频词:二维关系
nltp APP-分析买家评论的评分-高频词:二维关系
w
# -*- coding: utf-8 -*- from nltk import * # TO FIX : No such file or directory os.chdir(r‘E:\zpy‘) f = open(‘reviews_text_lt_3.txt‘, ‘r‘) f_r = f.read() strList = f_r.split(‘ ‘) fdist1 = FreqDist(strList) #总的词数 print fdist1 #表达式 keys()为我们提供了文本中所有不同类型的链表 vocabulary1 = fdist1.keys() #通过切片看看这个链表的前 50 项 res0_50 =vocabulary1[:50] print res0_50
C:\>python E:\zpy\wltp.py <FreqDist with 16789 samples and 180043 outcomes> [‘‘, ‘raining‘, ‘disappointing.It‘, ‘uncomfortable...‘, "lot‘s", ‘uv.\nSo,‘, ‘yellow‘, ‘Seller‘, ‘four‘, ‘vaporizers.I‘, ‘Does‘, ‘completely!!‘, ‘hanging‘, ‘Monday,‘, ‘asap!!This‘, ‘Until‘, ‘instead.The‘, ‘malfunctioned.‘, ‘Lately‘, ‘looking‘, ‘LAST‘, ‘eligible‘, ‘electricity‘, ‘DISAPPOINTED‘, ‘oneWorks‘, ‘powdery‘, ‘unanswered‘, ‘also.‘, ‘refun ‘sooooo‘, ‘foul‘, ‘on\nafter‘, ‘fingers.‘, ‘advice:‘, ‘fingers,‘, ‘advice?‘, ‘each),‘, ‘month.I‘] C:\>
SELECT amz_review_text FROM amz_reviews_grab_us WHERE amz_review_rating < 3 LIMIT 3000;
对于通过亚马逊us美国站的买家而言,在数据库前3000条的时间周期y-m-d内,在不考虑品类、价格、评分相对值等因素的情况下,
暂得出以下推测:
0-卖品属性为yellow,其他条件相同情况下,可能不受欢迎,评分相对低;
1-周一可能会给买家糟糕的购买体验,周一的促销活动须结合其他因素,如人文风俗、新闻事件慎重;
注:dev的当前视角
nltp APP-分析买家评论的评分-高频词:二维关系
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。