首页 > 代码库 > Hoeffding's inequality
Hoeffding's inequality
Let $\{Y_i: i\in J\}$ be zero mean independent complex-valued random variables satisfying $|Y_i|\le R.$ Then for all $c>0,$
$$P\left(|\sum_{i\in J}Y_i|>c\right)\le 4\exp\left(\frac{-c^2}{4R^2|J|}\right).$$
See, Hoeffding, W, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Asociation, 58 (1963):13-30
or P. Shmerkin Salem sets with no arithmetic progressions, international Mathematiics Research Notices.
Hoeffding's inequality
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。