首页 > 代码库 > LintCode-Maximum Subarray III

LintCode-Maximum Subarray III

Given an array of integers and a number k, find k non-overlapping subarrays which have the largest sum.

The number in each subarray should be contiguous.

Return the largest sum.

Note

The subarray should contain at least one number

Analysis:

DP. d[i][j] means the maximum sum we can get by selecting j subarrays from the first i elements.

d[i][j] = max{d[p][j-1]+maxSubArray(p+1,i)}

we iterate p from i-1 to j-1, so we can record the max subarray we get at current p, this value can be used to calculate the max subarray from p-1 to i when p becomes p-1.

Solution:

 1 public class Solution { 2     /** 3      * @param nums: A list of integers 4      * @param k: An integer denote to find k non-overlapping subarrays 5      * @return: An integer denote the sum of max k non-overlapping subarrays 6      */ 7     public int maxSubArray(ArrayList<Integer> nums, int k) { 8         if (nums.size()<k) return 0; 9         int len = nums.size();10         //d[i][j]: select j subarrays from the first i elements, the max sum we can get.11         int[][] d = new int[len+1][k+1];12         for (int i=0;i<=len;i++) d[i][0] = 0;        13         14         for (int j=1;j<=k;j++)15             for (int i=j;i<=len;i++){16                 d[i][j] = Integer.MIN_VALUE;17                 //Initial value of endMax and max should be taken care very very carefully.18                 int endMax = 0;19                 int max = Integer.MIN_VALUE;                20                 for (int p=i-1;p>=j-1;p--){21                     endMax = Math.max(nums.get(p), endMax+nums.get(p));22                     max = Math.max(endMax,max);23                     if (d[i][j]<d[p][j-1]+max)24                         d[i][j] = d[p][j-1]+max;                    25                 }26             }27 28         return d[len][k];29                     30 31     }32 }

Solution 2:

Use one dimension array.

 1 public class Solution { 2     /** 3      * @param nums: A list of integers 4      * @param k: An integer denote to find k non-overlapping subarrays 5      * @return: An integer denote the sum of max k non-overlapping subarrays 6      */ 7     public int maxSubArray(ArrayList<Integer> nums, int k) { 8         if (nums.size()<k) return 0; 9         int len = nums.size();10         //d[i][j]: select j subarrays from the first i elements, the max sum we can get.11         int[] d = new int[len+1];12         for (int i=0;i<=len;i++) d[i] = 0;        13         14         for (int j=1;j<=k;j++)15             for (int i=len;i>=j;i--){16                 d[i] = Integer.MIN_VALUE;17                 int endMax = 0;18                 int max = Integer.MIN_VALUE;                19                 for (int p=i-1;p>=j-1;p--){20                     endMax = Math.max(nums.get(p), endMax+nums.get(p));21                     max = Math.max(endMax,max);22                     if (d[i]<d[p]+max)23                         d[i] = d[p]+max;                    24                 }25             }26 27         return d[len];28                     29 30     }31 }

 

 

LintCode-Maximum Subarray III