首页 > 代码库 > LeetCode: Minimum Path Sum 解题报告
LeetCode: Minimum Path Sum 解题报告
Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
SOLUTION 1:
相当基础的DP题目:
This is a simple DP.
表达式: D[i][j]: 从左下到本点的最小值
递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j]
初始化: D[i][j] = grid[i][j].
终止条件:到达终点
1 // Solution 1: DP 2 public int minPathSum1(int[][] grid) { 3 if (grid == null || grid.length == 0 || grid[0].length == 0) { 4 return 0; 5 } 6 7 int rows = grid.length; 8 int cols = grid[0].length; 9 int[][] D = new int[rows][cols];10 11 // This is a simple DP.12 // 表达式: D[i][j]: 从左下到本点的最小值13 // 递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j]14 // 初始化: D[i][j] = grid[i][j].15 for (int i = 0; i < rows; i++) {16 for (int j = 0; j < cols; j++) {17 D[i][j] = grid[i][j];18 19 if (i == 0 && j != 0) {20 D[i][j] += D[i][j - 1];21 } else if (j == 0 && i != 0) {22 D[i][j] += D[i - 1][j];23 } else if (i != 0 && j != 0) {24 D[i][j] += Math.min(D[i][j - 1], D[i - 1][j]);25 }26 }27 }28 29 return D[rows - 1][cols - 1];30 }
SOLUTION 2:
使用DFS + Memory也可以解决问题。当前到终点有2种方式,往右,往下,两种路线,取一个较小的路线就行了。
1 public class Solution { 2 // Solution 1: DP 3 public int minPathSum1(int[][] grid) { 4 if (grid == null || grid.length == 0 || grid[0].length == 0) { 5 return 0; 6 } 7 8 int rows = grid.length; 9 int cols = grid[0].length;10 int[][] D = new int[rows][cols];11 12 // This is a simple DP.13 // 表达式: D[i][j]: 从左下到本点的最小值14 // 递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j]15 // 初始化: D[i][j] = grid[i][j].16 for (int i = 0; i < rows; i++) {17 for (int j = 0; j < cols; j++) {18 D[i][j] = grid[i][j];19 20 if (i == 0 && j != 0) {21 D[i][j] += D[i][j - 1];22 } else if (j == 0 && i != 0) {23 D[i][j] += D[i - 1][j];24 } else if (i != 0 && j != 0) {25 D[i][j] += Math.min(D[i][j - 1], D[i - 1][j]);26 }27 }28 }29 30 return D[rows - 1][cols - 1];31 }32 33 // Solution 2: DFS + memory.34 public int minPathSum(int[][] grid) {35 if (grid == null || grid.length == 0 || grid[0].length == 0) {36 return 0;37 }38 39 int[][] memory = new int[grid.length][grid[0].length];40 41 // Bug 1: forget to initilize42 for (int i = 0; i < grid.length; i++) {43 for (int j = 0; j < grid[0].length; j++) {44 memory[i][j] = -1;45 }46 }47 48 return dfs(grid, 0, 0, memory);49 }50 51 public int dfs (int[][] grid, int i, int j, int[][] memory) {52 int rows = grid.length;53 int cols = grid[0].length;54 55 if (i >= rows || j >= cols) {56 // 表示不可达57 return Integer.MAX_VALUE;58 }59 60 // The base case: arrive the destination.61 if (i == rows - 1 && j == cols - 1) {62 return grid[i][j];63 }64 65 // 已经搜索过的点不需要重复搜索 66 if (memory[i][j] != -1) {67 return memory[i][j];68 }69 70 int sum = grid[i][j];71 72 // 开始dfs 可能的路径,目前我们只有2种可能73 sum += Math.min(dfs(grid, i + 1, j, memory), dfs(grid, i, j + 1, memory));74 75 // Record the memory76 memory[i][j] = sum;77 return sum; 78 }79 }
GITHUB:
https://github.com/yuzhangcmu/LeetCode_algorithm/blob/master/dp/MinPathSum_1222_2014.java
LeetCode: Minimum Path Sum 解题报告
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。