首页 > 代码库 > POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
Balanced Lineup
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 53703 | Accepted: 25237 | |
Case Time Limit: 2000MS |
Description
For the daily milking, Farmer John‘s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 31734251 54 62 2
Sample Output
630
Source
1 #include <iostream> 2 #include <stdio.h> 3 #include <string.h> 4 using namespace std; 5 #define maxsize 200020 6 typedef struct 7 { 8 int left,right; 9 int maxn;10 int minn;11 }Node;12 int n,m;13 int Max,Min;14 int num[maxsize];15 Node tree[maxsize*20];16 inline void buildtree(int root,int left,int right)// 构建线段树17 {18 int mid;19 tree[root].left=left;20 tree[root].right=right;// 当前节点所表示的区间21 if(left==right)// 左右区间相同,则此节点为叶子,max 应储存对应某个学生的值22 {23 tree[root].maxn=num[left];24 tree[root].minn=num[left];25 return;26 }27 mid=(left+right)/2;28 //int a,b;// 递归建立左右子树,并从子树中获得最大值29 buildtree(2*root,left,mid);30 buildtree(2*root+1,mid+1,right);31 tree[root].maxn=max(tree[root*2].maxn,tree[root*2+1].maxn);32 tree[root].minn=min(tree[root*2].minn,tree[root*2+1].minn);33 }34 inline void find(int root,int left,int right)// 从节点 root 开始,查找 left 和 right 之间的最大值35 {36 int mid;37 //if(tree[root].left>right||tree[root].right<left)// 若此区间与 root 所管理的区间无交集38 //return;39 if(left==tree[root].left&&tree[root].right==right)// 若此区间包含 root 所管理的区间40 {41 Max=max(tree[root].maxn,Max);42 Min=min(tree[root].minn,Min);43 return;44 }45 mid=(tree[root].left+tree[root].right)/2;46 if(right<=mid)47 find(root*2,left,right);48 else if(left>mid)49 find(root*2+1,left,right);50 else51 {52 find(root*2,left,mid);53 find(root*2+1,mid+1,right);54 //tree[root].maxn=max(tree[root*2].maxn,tree[root*2+1].maxn);55 //tree[root].minn=min(tree[root*2].minn,tree[root*2+1].minn);56 //return;57 }58 }59 60 int main()61 {62 //char c;63 int i;64 int x,y;65 //scanf("d%d",&n,&m);66 while(scanf("%d%d",&n,&m)!=EOF)67 {68 for(i=1;i<=n;i++)69 scanf("%d",&num[i]);70 buildtree(1,1,n);71 for(i=1;i<=m;i++)72 {73 //getchar();74 Max=-99999999999;75 Min= 99999999999;76 scanf("%d%d",&x,&y);77 //if(c==‘Q‘)78 //printf("%d\n",find(1,x,y));79 //else80 //{81 // num[x]=y;82 // update(1,x,y);83 //}84 find(1,x,y);85 printf("%d\n",Max-Min);86 }87 }88 return 0;89 }
POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】