首页 > 代码库 > opencv HOG中detectMultiScale函数详解

opencv HOG中detectMultiScale函数详解

参考:http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html
  • 函数作用:进行多尺度目标检测

技术分享技术分享技术分享

  • 函数接口   

void HOGDescriptor::detectMultiScale(

   const Mat& img, vector<Rect>& foundLocations, vector<double>& foundWeights,

   double hitThreshold, Size winStride, Size padding,

   double scale0, double finalThreshold, bool useMeanshiftGrouping) const                                                                           

参数注释

<1>img:源图像。
<2>foundlocations:检测出的物体的边缘。
<3>foundWeights: 检测窗口得分
<4>hit_threshold:阀值,特征向量和SVM划分超平面的距离,大于这个值的才作为目标返回。
<4>win_stride:窗口步长,必须是block步长的整数倍。
<5>padding:图片边缘补齐参数,gpu版本必须是(0,0)。
<6>scale0:检测窗口增长参数。
<7>finalThreshold:检测结果聚类参数
<8>useMeanshiftGrouping:聚类方式选择的参数
代码注释:  

 

973 //返回测试图片中水平方向和垂直方向共有多少个检测窗口,不能整除的话多于的边界会不被计算在内?

 974 Size HOGCache::windowsInImage(Size imageSize, Size winStride) const
 975 {
 976     return Size((imageSize.width - winSize.width)/winStride.width + 1,
 977                 (imageSize.height - winSize.height)/winStride.height + 1);
 978 }
 979 
 980 
 981 //给定图片的大小,已经检测窗口滑动的大小和测试图片中的检测窗口的索引,得到该索引处
 982 //检测窗口的尺寸,包括坐标信息
 983 Rect HOGCache::getWindow(Size imageSize, Size winStride, int idx) const
 984 {
 985     int nwindowsX = (imageSize.width - winSize.width)/winStride.width + 1;
 986     int y = idx / nwindowsX;//
 987     int x = idx - nwindowsX*y;//余数
 988     return Rect( x*winStride.width, y*winStride.height, winSize.width, winSize.height );
 989 }
 990 
 991 
 992 void HOGDescriptor::compute(const Mat& img, vector<float>& descriptors,
 993                             Size winStride, Size padding,
 994                             const vector<Point>& locations) const
 995 {
 996     //Size()表示长和宽都是0
 997     if( winStride == Size() )
 998         winStride = cellSize;
 999     //gcd为求最大公约数,如果采用默认值的话,则2者相同
1000     Size cacheStride(gcd(winStride.width, blockStride.width),
1001                      gcd(winStride.height, blockStride.height));
1002     size_t nwindows = locations.size();
1003     //alignSize(m, n)返回n的倍数大于等于m的最小值
1004     padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width);
1005     padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
1006     Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2);
1007 
1008     HOGCache cache(this, img, padding, padding, nwindows == 0, cacheStride);
1009 
1010     if( !nwindows )
1011         //Mat::area()表示为Mat的面积
1012         nwindows = cache.windowsInImage(paddedImgSize, winStride).area();
1013 
1014     const HOGCache::BlockData* blockData = http://www.mamicode.com/&cache.blockData[0];
1015 
1016     int nblocks = cache.nblocks.area();
1017     int blockHistogramSize = cache.blockHistogramSize;
1018     size_t dsize = getDescriptorSize();//一个hog的描述长度
1019     //resize()为改变矩阵的行数,如果减少矩阵的行数则只保留减少后的
1020     //那些行,如果是增加行数,则保留所有的行。
1021     //这里将描述子长度扩展到整幅图片
1022     descriptors.resize(dsize*nwindows);
1023 
1024     for( size_t i = 0; i < nwindows; i++ )
1025     {
1026         //descriptor为第i个检测窗口的描述子首位置。
1027         float* descriptor = &descriptors[i*dsize];
1028        
1029         Point pt0;
1030         //非空
1031         if( !locations.empty() )
1032         {
1033             pt0 = locations[i];
1034             //非法的点
1035             if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width ||
1036                 pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height )
1037                 continue;
1038         }
1039         //locations为空
1040         else
1041         {
1042             //pt0为没有扩充前图像对应的第i个检测窗口
1043             pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding);
1044             CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0);
1045         }
1046 
1047         for( int j = 0; j < nblocks; j++ )
1048         {
1049             const HOGCache::BlockData& bj = blockData[j];
1050             //pt为block的左上角相对检测图片的坐标
1051             Point pt = pt0 + bj.imgOffset;
1052 
1053             //dst为该block在整个测试图片的描述子的位置
1054             float* dst = descriptor + bj.histOfs;
1055             const float* src =http://www.mamicode.com/ cache.getBlock(pt, dst);
1056             if( src != dst )
1057 #ifdef HAVE_IPP
1058                ippsCopy_32f(src,dst,blockHistogramSize);
1059 #else
1060                 for( int k = 0; k < blockHistogramSize; k++ )
1061                     dst[k] = src[k];
1062 #endif
1063         }
1064     }
1065 }
1066 
1067 
1068 void HOGDescriptor::detect(const Mat& img,
1069     vector<Point>& hits, vector<double>& weights, double hitThreshold, 
1070     Size winStride, Size padding, const vector<Point>& locations) const
1071 {
1072     //hits里面存的是符合检测到目标的窗口的左上角顶点坐标
1073     hits.clear();
1074     if( svmDetector.empty() )//svm算子不能为空,因为这是HOGDescriptor类的成员函数,里面用了很多成员变量
1075         return;
1076 
1077     if( winStride == Size() )//如果窗口步长为0 ,则将其设为cell的大小
1078         winStride = cellSize;
1079     Size cacheStride(gcd(winStride.width, blockStride.width),  //CacheStride为winStride和BlockStride的最大公约数
1080                      gcd(winStride.height, blockStride.height));
1081     size_t nwindows = locations.size();//locations为预先传入的窗口子集,在这个子集中求目标,这个版本中没有用
1082     padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width);//将padding改成大于等于padding ,但是可以被cacheStride整除的最小数
1083     padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height);
1084     Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2);//padding 以后的图片大小
1085     //这个结构的应该是应该是保存HOG描述子和其一些列参数的,构造函数会将一切数据都算好
1086     HOGCache cache(this, img, padding, padding, nwindows == 0, cacheStride);
1087 
1088     if( !nwindows )
1089         nwindows = cache.windowsInImage(paddedImgSize, winStride).area();//图片包含的检测窗口的个数
1090     //BlockData结构体是对应的block数据的偏移量。histOfs和imgOffset.其中histOfs表示为该block对整个滑动窗口内hog描述算子的贡献那部分向量的起始位置;imgOffset为该block在滑动窗口图片中的坐标(左上角坐标)。
1091     const HOGCache::BlockData* blockData = http://www.mamicode.com/&cache.blockData[0];
1092 
1093     int nblocks = cache.nblocks.area();//每个检测窗口的block数量
1094     int blockHistogramSize = cache.blockHistogramSize;//每个block直方图的维数
1095     size_t dsize = getDescriptorSize();
1096 
1097     double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0;//判断有没有加偏移量,rho
1098     vector<float> blockHist(blockHistogramSize);
1099 
1100     for( size_t i = 0; i < nwindows; i++ )//遍历每一个window将其得分与hitThreshold看其是否是目标物 
1101     {
1102         Point pt0;
1103         if( !locations.empty() )
1104         {
1105             pt0 = locations[i];
1106             if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width ||
1107                 pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height )
1108                 continue;
1109         }
1110         else
1111         {   //给定padding后图片的大小,返回第i个滑动窗口在原图片中的坐标信息,得到该索引处
1112 pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding); 1113 CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0); 1114 } 1115 double s = rho; 1116 //svmVec指向svmDetector最前面那个元素 1117 const float* svmVec = &svmDetector[0]; 1118 #ifdef HAVE_IPP 1119 int j; 1120 #else 1121 int j, k; 1122 #endif 1123 for( j = 0; j < nblocks; j++, svmVec += blockHistogramSize ) 1124 { 1125 const HOGCache::BlockData& bj = blockData[j];//当前block在window中的偏移量 1126 Point pt = pt0 + bj.imgOffset;//pt0为window在待检测图片中的偏移量,pt是当前block在图片中的偏移量 1127 1128 //vec为测试图片pt处的block贡献的描述子指针 1129 const float* vec = cache.getBlock(pt, &blockHist[0]);//函数返回一个block描述子的指针 1130 #ifdef HAVE_IPP 1131 Ipp32f partSum; 1132 ippsDotProd_32f(vec,svmVec,blockHistogramSize,&partSum); 1133 s += (double)partSum; 1134 #else 1135 for( k = 0; k <= blockHistogramSize - 4; k += 4 ) //描述子与svm向量相乘 1136 //const float* svmVec = &svmDetector[0]; 1137 s += vec[k]*svmVec[k] + vec[k+1]*svmVec[k+1] + 1138 vec[k+2]*svmVec[k+2] + vec[k+3]*svmVec[k+3]; 1139 for( ; k < blockHistogramSize; k++ ) 1140 s += vec[k]*svmVec[k]; 1141 #endif 1142 } 1143 if( s >= hitThreshold )//s是上一个for循环中每个block累加的结果,s即当前window的检测得分 1144 { 1145 hits.push_back(pt0); 1146 weights.push_back(s); 1147 } 1148 } 1149 } 1150 1151 //不用保留检测到目标的可信度,即权重 1152 void HOGDescriptor::detect(const Mat& img, vector<Point>& hits, double hitThreshold, 1153 Size winStride, Size padding, const vector<Point>& locations) const 1154 { 1155 vector<double> weightsV; 1156 detect(img, hits, weightsV, hitThreshold, winStride, padding, locations); 1157 } 1158 1159 struct HOGInvoker 1160 { 1161 HOGInvoker( const HOGDescriptor* _hog, const Mat& _img, 1162 double _hitThreshold, Size _winStride, Size _padding, 1163 const double* _levelScale, ConcurrentRectVector* _vec, 1164 ConcurrentDoubleVector* _weights=0, ConcurrentDoubleVector* _scales=0 ) 1165 { 1166 hog = _hog; 1167 img = _img; 1168 hitThreshold = _hitThreshold; 1169 winStride = _winStride; 1170 padding = _padding; 1171 levelScale = _levelScale; 1172 vec = _vec; 1173 weights = _weights; 1174 scales = _scales; 1175 } 1176 1177 void operator()( const BlockedRange& range ) const 1178 { 1179 int i, i1 = range.begin(), i2 = range.end(); 1180 double minScale = i1 > 0 ? levelScale[i1] : i2 > 1 ? levelScale[i1+1] : std::max(img.cols, img.rows);//当i1=0,i2=1时 minScale取max(img.cols, img.rows) 1181 //缩放的最大尺寸,缩放之后的图像不会达到这个尺寸 1182 Size maxSz(cvCeil(img.cols/minScale), cvCeil(img.rows/minScale)); 1183 Mat smallerImgBuf(maxSz, img.type());//当i1==0时smallerImgBuf的大小为1*1,可能是因为i1==0时没有尺寸缩放,没有尺寸缩放时不需要smallerImgBuf来初始化

1184 vector<Point> locations; 1185 vector<double> hitsWeights; 1186 1187 for( i = i1; i < i2; i++ ) 1188 { 1189 double scale = levelScale[i]; 1190 Size sz(cvRound(img.cols/scale), cvRound(img.rows/scale)); 1191 //smallerImg只是构造一个指针,并没有复制数据 1192 Mat smallerImg(sz, img.type(), smallerImgBuf.data); 1193 //没有尺寸缩放 1194 if( sz == img.size() ) 1195 smallerImg = Mat(sz, img.type(), img.data, img.step); 1196 //有尺寸缩放 1197 else 1198 resize(img, smallerImg, sz);
1199             //检测的实际函数,该函数实际上是将返回的值存在locations和histWeights中
1200             //其中locations存的是目标区域的左上角坐标
1201             hog->detect(smallerImg, locations, hitsWeights, hitThreshold, winStride, padding);
1202             Size scaledWinSize = Size(cvRound(hog->winSize.width*scale), cvRound(hog->winSize.height*scale));//计算目标区域的大小
1203             for( size_t j = 0; j < locations.size(); j++ )
1204             {
1205                 //保存目标区域
1206                 vec->push_back(Rect(cvRound(locations[j].x*scale),
1207                                     cvRound(locations[j].y*scale),
1208                                     scaledWinSize.width, scaledWinSize.height));
1209                 //保存缩放尺寸
1210                 if (scales) {
1211                     scales->push_back(scale);
1212                 }
1213             }
1214             //保存svm计算后的结果值,weight指针有效才保存
1215             if (weights && (!hitsWeights.empty()))
1216             {
1217                 for (size_t j = 0; j < locations.size(); j++)
1218                 {
1219                     weights->push_back(hitsWeights[j]);
1220                 }
1221             }        
1222         }
1223     }
1224 
1225     const HOGDescriptor* hog;
1226     Mat img;
1227     double hitThreshold;
1228     Size winStride;
1229     Size padding;
1230     const double* levelScale;
1232     ConcurrentRectVector* vec;
1234     ConcurrentDoubleVector* weights;
1235     ConcurrentDoubleVector* scales;
1236 };
1237 
1238 
1239 void HOGDescriptor::detectMultiScale(
1240     const Mat& img, vector<Rect>& foundLocations, vector<double>& foundWeights,
1241     double hitThreshold, Size winStride, Size padding,
1242     double scale0, double finalThreshold, bool useMeanshiftGrouping) const  
1243 {
1244     double scale = 1.;
1245     int levels = 0;
1246 
1247     vector<double> levelScale;//保存图片将要缩放的尺度
1249     //nlevels默认的是64层 scale0是图像缩小参数
1250     for( levels = 0; levels < nlevels; levels++ )
1251     {
1252 levelScale.push_back(scale);
1257         //只考虑测试图片尺寸比检测窗口尺寸大以及scale0>1的情况,不符合要求中断循环。所以nlevel大一点没关系(并不会特别影响速度),关键的参数其实是scale0
1253 if( cvRound(img.cols/scale) < winSize.width ||1254 cvRound(img.rows/scale) < winSize.height ||1255 scale0 <= 1 )1256 break;1258 scale *= scale0;1259 }1260 levels = std::max(levels, 1);1261 levelScale.resize(levels);1262 1263 ConcurrentRectVector allCandidates;
1264 ConcurrentDoubleVector tempScales;
1265 ConcurrentDoubleVector tempWeights;1266 vector<double> foundScales;1267 1268 //TBB并行计算,会将参数range 传到HOGInvoker结构体的()重载函数中,在这个里面对各个尺度的目标图片进行检测1269 parallel_for(Range(0, (int)levelScale.size()),1270 HOGInvoker(this, img, hitThreshold, winStride, padding, &levelScale[0], &allCandidates, &tempWeights, &tempScales));

1271     //将tempScales中的内容复制到foundScales中;这个参数其实没有什么用,保存的是检测到目标的图像对应的尺度
1272     std::copy(tempScales.begin(), tempScales.end(), back_inserter(foundScales));
1274     foundLocations.clear();
1275     //将候选目标窗口保存在foundLocations中
1276     std::copy(allCandidates.begin(), allCandidates.end(), back_inserter(foundLocations));
1277     foundWeights.clear();
1278     //将候选目标可信度保存在foundWeights中
1279     std::copy(tempWeights.begin(), tempWeights.end(), back_inserter(foundWeights));

1280      //对矩形框进行聚类
1281 if ( useMeanshiftGrouping ) 1282 { 1283 groupRectangles_meanshift(foundLocations, foundWeights, foundScales, finalThreshold, winSize); 1284 } 1285 else 1286 { 1288 groupRectangles(foundLocations, (int)finalThreshold, 0.2); 1289 } 1290 } 1291 1292 //不考虑目标的置信度,通过调用包含置信度的版本 1293 void HOGDescriptor::detectMultiScale(const Mat& img, vector<Rect>& foundLocations, 1294 double hitThreshold, Size winStride, Size padding, 1295 double scale0, double finalThreshold, bool useMeanshiftGrouping) const 1296 { 1297 vector<double> foundWeights; 1298 detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride, 1299 padding, scale0, finalThreshold, useMeanshiftGrouping); 1300 }


opencv HOG中detectMultiScale函数详解