首页 > 代码库 > [LeetCode]95.Unique Binary Search Trees II
[LeetCode]95.Unique Binary Search Trees II
【题目】
Given n, generate all structurally unique BST‘s (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST‘s shown below.
1 3 3 2 1 \ / / / \ 3 2 1 1 3 2 / / \ 2 1 2 3
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
【分析】
参考:[LeetCode]96.Unique Binary Search Trees
【代码】
/********************************* * 日期:2014-12-27 * 作者:SJF0115 * 题目: 95.Unique Binary Search Trees II * 来源:https://oj.leetcode.com/problems/unique-binary-search-trees-ii/ * 结果:AC * 来源:LeetCode * 总结: **********************************/ #include <iostream> #include <vector> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: vector<TreeNode *> generateTrees(int n) { if (n <= 0){ return generate(1, 0); }//if else{ return generate(1, n); } }// private: // 返回根节点结合 vector<TreeNode*> generate(int start,int end){ vector<TreeNode*> subTree; if(start > end){ subTree.push_back(NULL); return subTree; }//if // i作为根节点 for(int i = start;i <= end;i++){ // 以i为根节点的树,其左子树由[start,i-1]构成,其右子树由[i+1,end]构成。 // 返回的是不同二叉查找树的根节点,几种二叉查找树就返回几个根节点 vector<TreeNode*> leftSubTree = generate(start,i-1); vector<TreeNode*> rightSubTree = generate(i+1,end); // 左子树右子树跟根节点连接 // 以i为根的树的个数,等于左子树的个数乘以右子树的个数 for(int j = 0;j < leftSubTree.size();j++){ for(int k = 0;k < rightSubTree.size();k++){ TreeNode* node = new TreeNode(i); node->left = leftSubTree[j]; node->right = rightSubTree[k]; subTree.push_back(node); }//for }//for }//for return subTree; }// }; // 先序遍历 void PreOrder(TreeNode* root){ if(root == NULL){ return; }//if cout<<root->val<<" "; PreOrder(root->left); PreOrder(root->right); } int main() { Solution solution; vector<TreeNode*> vec = solution.generateTrees(3); for(int i = 0;i < vec.size();i++){ TreeNode* root = vec[i]; PreOrder(root); cout<<endl; } }
[LeetCode]95.Unique Binary Search Trees II
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。