首页 > 代码库 > Unique Binary Search Trees II -- LeetCode

Unique Binary Search Trees II -- LeetCode

原题链接: http://oj.leetcode.com/problems/unique-binary-search-trees-ii/ 
这道题是求解全部可行的二叉查找树,从Unique Binary Search Trees中我们已经知道,可行的二叉查找树的数量是对应的卡特兰数,不是一个多项式时间的数量级,所以我们要求解全部的树,自然是不能多项式时间内完毕的了。算法上还是用求解NP问题的方法来求解,也就是N-Queens中介绍的在循环中调用递归函数求解子问题。思路是每次一次选取一个结点为根,然后递归求解左右子树的全部结果。最后依据左右子树的返回的全部子树。依次选取然后接上(每一个左边的子树跟全部右边的子树匹配,而每一个右边的子树也要跟全部的左边子树匹配,总共同拥有左右子树数量的乘积种情况),构造好之后作为当前树的结果返回。

代码例如以下: 

public ArrayList<TreeNode> generateTrees(int n) {
    return helper(1,n);
}
private ArrayList<TreeNode> helper(int left, int right)
{
    ArrayList<TreeNode> res = new ArrayList<TreeNode>();
    if(left>right)
    {
        res.add(null);
        return res;
    }
    for(int i=left;i<=right;i++)
    {
        ArrayList<TreeNode> leftList = helper(left,i-1);
        ArrayList<TreeNode> rightList = helper(i+1,right);
        for(int j=0;j<leftList.size();j++)
        {
            for(int k=0;k<rightList.size();k++)
            {
                TreeNode root = new TreeNode(i);
                root.left = leftList.get(j);
                root.right = rightList.get(k);
                res.add(root);
            }
        }
    }
    return res;
}
实现中还是有一些细节的,由于构造树时两边要遍历全部左右的匹配。然后接到根上面。


当然我们也能够像在Unique Binary Search Trees中那样存储全部的子树历史信息,然后进行拼合,尽管能够省一些时间,可是终于还是逃只是每一个结果要一次运算。时间复杂度还是非多项式的,而且要耗费大量的空间。感觉这种意义就不是非常大了。

Unique Binary Search Trees II -- LeetCode