首页 > 代码库 > python学习笔记29(python中堆的使用)

python学习笔记29(python中堆的使用)

堆(heap):优先队列的一种,使用优先队列能够以任意顺序增加对象,并且能在任意时间(可能在增加对象的同时)找到(也可能是移除)最小元素,比用于列表中min的方法要高效。

Python中并没有独立的堆类型,只有一个包涵一些堆操作函数的模块,这个模块叫heapq.

技术分享

import heapq

1.heapq.heappush(heap,item)  #heap为定义堆,item 增加的元素;

eg.

  heap=[]
  heapq.heappush(heap, 2)

2.heapq.heapify(list)        #将列表转换为堆

eg.

  list=[5,8,0,3,6,7,9,1,4,2]

  heapq.heapify(list) 

3.heapq.heappop(heap)       #删除最小的值

eg.

  heap=[2, 4, 3, 5, 7,8, 9, 6]

 heapq.heappop(heap) ---->heap=[3, 4, 5, 7, 9,6, 8]

4.heapq.heapreplace(heap,item)    #删除最小元素值,添加新的元素值

eg.

  heap=[2, 4, 3, 5, 7, 8,9, 6]

  heapq.heapreplace(heap,11) ------>heap=[2, 3, 4, 6, 8, 5, 7, 9, 11]

5.heapq.heappushpop(heap,item)    #首判断添加元素值与堆的第一个元素值对比,如果大于则删除最小元素,然后添加新的元素值,否则不更改堆

eg.

  条件:item >heap[0]

  heap=[2, 4, 3, 5, 7, 8, 9, 6]

  heapq.heappushpop(heap, 9)---->heap=[3, 4, 5, 6, 8, 9, 9,7]

  条件:item

  heap=[2, 4, 3, 5, 7, 8, 9, 6]

  heapq.heappushpop(heap, 9)---->heap=[2, 4, 3, 5, 7, 8, 9,6]

6.heapq.merge(...)            #将多个堆合并

7.heapq.nlargest (n,heap)    #查询堆中的最大元素,n表示查询元素个数

eg.

  heap=[2, 3, 5, 6, 4, 8,7, 9]

  heapq.nlargest (1,heap)--->[9]
8.heapq.nsmallest(n,heap)    #查询堆中的最小元素,n表示查询元素个数

eg.

 heap=[2, 3, 5, 6, 4, 8,7, 9]

 heapq.nlargest (1,heap)--->[2]

 

python学习笔记29(python中堆的使用)