首页 > 代码库 > 快速幂取模算法
快速幂取模算法
参考文章来源:Reait Home(http://www.reait.com/blog.html) 转载请注明,谢谢合作。
快速幂取模 是一种常用的算法,这里总结下。
求a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能
算法1:利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化
代码如下:
int Mod1(int a,int b,int n) { int cnt = 1; while (b--) { cnt = a * cnt % n; } return cnt; } </span>算法2:另一种算法利用了二分的思想,可以达到O(logn)。
可以把b按二进制展开为:b = p(n)*2^n + p(n-1)*2^(n-1) +…+ p(1)*2 + p(0)
其中p(i) (0<=i<=n)为 0 或 1
这样 a^b = a^ (p(n)*2^n + p(n-1)*2^(n-1) +...+ p(1)*2 + p(0))
= a^(p(n)*2^n) * a^(p(n-1)*2^(n-1)) *...* a^(p(1)*2) * a^p(0)
对于p(i)=0的情况, a^(p(i) * 2^(i-1) ) = a^0 = 1,不用处理
我们要考虑的仅仅是p(i)=1的情况
化简:a^(2^i) = a^(2^(i-1) * 2) = ( a^( p(i) * 2^(i-1) ) )^2
(这里很重要!!具体请参阅秦九韶算法:http://baike.baidu.com/view/1431260.htm)
利用这一点,我们可以递推地算出所有的a^(2^i)
当然由算法1的结论,我们加上取模运算:
a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1))) %c
于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果, 即二进制扫描从最高位一直扫描到最低位
当然由算法1的结论,我们加上取模运算:
a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1))) %c
于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果, 即二进制扫描从最高位一直扫描到最低位
实例代码:递归
int Mod2(int a,int b,int n) { int t = 1; if(b == 0) return 1; if(b == 1) return a%n; t=Mod2(a, b>>1, n); t=t*t%n; if (b&1) { t = t*a % n; } return t; }实例代码2:非递归优化 :
int Mod3(int a,int b,int y) { int cnt=1; while(b) { if(b&1) cnt=cnt*a%y; a=a*a%y; b>>=1; } return cnt; }
快速幂取模算法
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。