首页 > 代码库 > 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

题目描述

曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置。超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升。它有三个参数n,k。它会向编号为0到k的位置发射威力为C(n,k) mod 2333的粒子流。现在SHTSC给出了他的超能粒子炮·改的参数,让你求其发射的粒子流的威力之和模2333。

输入

第一行一个整数t。表示数据组数。
之后t行,每行二个整数n,k。含义如题面描述。
k<=n<=10^18,t<=10^5

输出

t行每行一个整数,表示其粒子流的威力之和模2333的值。

样例输入

1
5 5

样例输出

32


题目大意

求$\sum\limits_{i=0}^kC_n^i\ mod\ 2333$的值

题解

Lucas定理

设$p=2333,a=\frac kp,b=k\ mod\ p$,那么有:

技术分享

于是可以递推预处理出0~2332内的组合数即f值,然后对于输入的n和k递归求解即可。

#include <cstdio>#include <cstring>#include <algorithm>#define N 2400using namespace std;typedef long long ll;const ll mod = 2333;ll c[N][N] , sum[N][N];void init(){	ll i , j;	for(i = 0 ; i <= mod ; i ++ )	{		c[i][0] = sum[i][0] = 1;		for(j = 1 ; j <= i ; j ++ ) c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;		for(j = 1 ; j <= mod ; j ++ ) sum[i][j] = (sum[i][j - 1] + c[i][j]) % mod;	}}ll choose(ll n , ll m){	if(n < m) return 0;	if(n < mod && m < mod) return c[n][m];	return choose(n / mod , m / mod) * choose(n % mod , m % mod) % mod;}ll calc(ll n , ll k){	if(k < mod) return sum[n % mod][k % mod];	return (sum[n % mod][mod - 1] * calc(n / mod , k / mod - 1) + choose(n / mod , k / mod) * calc(n % mod , k % mod)) % mod;}int main(){	init();	int T;	ll n , k;	scanf("%d" , &T);	while(T -- ) scanf("%lld%lld" , &n , &k) , printf("%lld\n" , calc(n , k));	return 0;}

 

【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理