首页 > 代码库 > Intersection
Intersection
Intersection
You are to write a program that has to decide whether a given line segment intersects a given rectangle.
An example:
line: start point: (4,9)
end point: (11,2)
rectangle: left-top: (1,5)
right-bottom: (7,1)
Figure 1: Line segment does not intersect rectangle
The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.
An example:
line: start point: (4,9)
end point: (11,2)
rectangle: left-top: (1,5)
right-bottom: (7,1)
Figure 1: Line segment does not intersect rectangle
The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.
Input
The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format:
xstart ystart xend yend xleft ytop xright ybottom
where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.
xstart ystart xend yend xleft ytop xright ybottom
where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.
Output
For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.
Sample Input
1 4 9 11 2 1 5 7 1
Sample Output
F
题目的意思是,给出一个实心矩形和一条直线,判断是否有交点.
看清楚了,这可是实心的矩形哦,所以,包含在矩形内的线段也是可以的.那么另一种情况,就是存在交点.那么只要判断线段与矩形四条边是否有交点就是了.
1 #include<cmath> 2 #include<cstring> 3 #include<cstdio> 4 #include<algorithm> 5 #define Vec point 6 using namespace std; 7 const double eps=1e-9; 8 int n; 9 struct point{ 10 double x,y; 11 void read(){scanf("%lf%lf",&x,&y);} 12 }seg1a,seg1b,seg2a,seg2b,seg3a,seg3b,seg4a,seg4b,seg0a,seg0b,ans; 13 int fabso(double x){return x<-eps?-1:x>eps;} 14 Vec operator + (point u,Vec v){ 15 Vec ret; ret.x=u.x+v.x,ret.y=u.y+v.y; 16 return ret; 17 } 18 Vec operator - (point u,point v){ 19 Vec ret; ret.x=u.x-v.x,ret.y=u.y-v.y; 20 return ret; 21 } 22 Vec operator * (Vec u,double v){ 23 Vec ret; ret.x=u.x*v,ret.y=u.y*v; 24 return ret; 25 } 26 Vec operator / (Vec u,double v){ 27 Vec ret; ret.x=u.x/v,ret.y=u.y/v; 28 return ret; 29 } 30 double cross(Vec u,Vec v){return u.x*v.y-u.y*v.x;} 31 bool dotonseg(point P,point U,point V){ 32 if ((P.x-U.x)*(P.x-V.x)>0) return 0; 33 if ((P.y-U.y)*(P.y-V.y)>0) return 0; 34 return cross(P-U,V-U)==0; 35 } 36 bool intersect(point P,point Q,point U,point V){ 37 if (fabso(cross(P-U,V-U)*cross(Q-U,V-U))<0&&fabso(cross(U-P,Q-P)*cross(V-P,Q-P))<0) return 1; 38 bool g1=dotonseg(P,U,V); 39 bool g2=dotonseg(Q,U,V); 40 bool g3=dotonseg(U,P,Q); 41 bool g4=dotonseg(V,P,Q); 42 if (g1||g2||g3||g4) return 1; 43 return 0; 44 } 45 bool side(point P,point Q,point U,point V){ 46 return cross(P-U,V-U)>0; 47 } 48 int main(){ 49 int T; 50 for (scanf("%d",&T); T; T--){ 51 seg0a.read(),seg0b.read(); 52 double a,b,c,d; scanf("%lf%lf%lf%lf",&a,&b,&c,&d); 53 if (a>c) swap(a,c); if (b<d) swap(b,d); 54 seg1a.x=a,seg1a.y=b,seg1b.x=a,seg1b.y=d; 55 seg2a.x=a,seg2a.y=d,seg2b.x=c,seg2b.y=d; 56 seg3a.x=c,seg3a.y=d,seg3b.x=c,seg3b.y=b; 57 seg4a.x=c,seg4a.y=b,seg4b.x=a,seg4b.y=b; 58 bool f1=intersect(seg0a,seg0b,seg1a,seg1b); 59 bool f2=intersect(seg0a,seg0b,seg2a,seg2b); 60 bool f3=intersect(seg0a,seg0b,seg3a,seg3b); 61 bool f4=intersect(seg0a,seg0b,seg4a,seg4b); 62 if (f1||f2||f3||f4) puts("T"); 63 else{ 64 f1=side(seg0a,seg0b,seg1a,seg1b); 65 f2=side(seg0a,seg0b,seg2a,seg2b); 66 f3=side(seg0a,seg0b,seg3a,seg3b); 67 f4=side(seg0a,seg0b,seg4a,seg4b); 68 if (f1==f2&&f2==f3&&f3==f4) puts("T"); else puts("F"); 69 } 70 } 71 return 0; 72 }
Intersection
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。