首页 > 代码库 > 我的spark python 决策树实例
我的spark python 决策树实例
from numpy import array from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.tree import DecisionTree, DecisionTreeModel from pyspark import SparkContext sc = SparkContext(appName="PythonDecisionTreeClassificationExample") data = [ LabeledPoint(0.0, [0.0]), LabeledPoint(1.0, [1.0]), LabeledPoint(0.0, [-2.0]), LabeledPoint(0.0, [-1.0]), LabeledPoint(0.0, [-3.0]), LabeledPoint(1.0, [4.0]), LabeledPoint(1.0, [4.5]), LabeledPoint(1.0, [4.9]), LabeledPoint(1.0, [3.0]) ] all_data = sc.parallelize(data) (trainingData, testData) = all_data.randomSplit([0.8, 0.2]) # model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {}) model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={}, impurity=‘gini‘, maxDepth=5, maxBins=32) print(model) print(model.toDebugString()) model.predict(array([1.0])) model.predict(array([0.0])) rdd = sc.parallelize([[1.0], [0.0]]) model.predict(rdd).collect() predictions = model.predict(testData.map(lambda x: x.features)) labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions) testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float(testData.count()) print(‘Test Error = ‘ + str(testErr)) print(‘Learned classification tree model:‘) print(model.toDebugString()) # Save and load model model.save(sc, "./myDecisionTreeClassificationModel") sameModel = DecisionTreeModel.load(sc, "./myDecisionTreeClassificationModel")
我的spark python 决策树实例
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。