首页 > 代码库 > 线段树初步

线段树初步

线段树模板1:https://www.luogu.org/problem/show?pid=3372

线段树模板2:https://www.luogu.org/problem/show?pid=3373

这些都比较基础,就是1或2个lazy标记的时候怎么处理?几乎不用考虑兼容性的问题。

现在这里有一道充分考验线段树lazy的兼容性问题的题目,涉及到4个lazy标记,怎么处理?

例子1:求线段树维护一个区间,支持如下操作:区间修改为同一个值(更改1),区间加一个数(更改2),区间和(运算1),区间最大值(运算2):

解析:首先,不考虑lazy标记的兼容性是不行的,需要注意的是区间修改和区间和,区间最大值是不兼容的,所以在lazy时需要特判!!!

还有需要注意的点非常多,需要注意,

//本程序经过oycy0306测试正确性保障++
uses math;
const maxn=1000; inf=233333333; type rec=record add,mk:longint; end; var n,m,i,opx,opr,opl,ch,ans:longint; f,ff,a:array[1..maxn]of longint; s:array[1..maxn]of rec; procedure build(x,l,r:longint); var m:longint; begin s[x].mk:=inf; s[x].add:=0; if l=r then begin ff[x]:=a[l]; f[x]:=a[l]; exit; end; m:=(l+r)>>1; build(2*x,l,m); build(2*x+1,m+1,r); f[x]:=f[2*x]+f[2*x+1]; ff[x]:=max(ff[2*x],ff[2*x+1]); end; procedure down(x,l,r,m,lson,rson:longint); begin if s[x].mk<>inf then begin //** s[lson].mk:=s[x].mk; s[rson].mk:=s[x].mk; s[lson].add:=0; s[rson].add:=0; f[lson]:=opx*(m-l+1); f[rson]:=opx*(r-m); ff[lson]:=opx; ff[rson]:=opx; s[x].mk:=inf; s[x].add:=0; exit; end; s[lson].mk:=inf; s[rson].mk:=inf; s[lson].add:=s[lson].add+s[x].add; s[rson].add:=s[rson].add+s[x].add; f[lson]:=f[lson]+s[x].add*(m-l+1); f[rson]:=f[rson]+s[x].add*(r-m); ff[lson]:=ff[lson]+s[x].add; ff[rson]:=ff[lson]+s[x].add; s[x].add:=0; s[x].mk:=inf; //** end; procedure calc(x,l,r:longint); var m:longint; begin if (opl<=l)and(opr>=r) then begin case ch of 1:begin s[x].mk:=opx; s[x].add:=0; f[x]:=opx*(r-l+1); ff[x]:=opx; end; 2:begin s[x].add:=s[x].add+opx; f[x]:=f[x]+opx*(r-l+1); ff[x]:=ff[x]+opx; end; 3:begin ans:=ans+f[x]; end; //f:sum 4:begin ans:=max(ff[x],ans)end; //ff:mk end; exit; end; m:=(l+r)>>1; if (s[x].mk<>inf)or(s[x].add>0)then down(x,l,r,m,2*x,2*x+1); if opl<=m then calc(2*x,l,m); if opr>m then calc(2*x+1,m+1,r); if (ch=1)or(ch=2) then begin f[x]:=f[2*x]+f[2*x+1]; ff[x]:=max(ff[2*x],ff[2*x+1]) end; end; begin writeln(input nodenum n=??); readln(n); writeln(input a num(n) sequence called a[]==??); for i:=1 to n do read(a[i]); write(the strat sequence a[]==); for i:=1 to n do write(a[i], );writeln; writeln(---------------------------); writeln(start to build XD tree.); writeln(---------------------------); build(1,1,n); writeln(---------------------------); writeln(XD tree is already built.); writeln(---------------------------); writeln(input your instructions number!); //build ok! readln(m); writeln(OK.); writeln(---------------------------); writeln(1=modify); writeln(2=ADD); writeln(3=question sum); writeln(4=max in the a[]); writeln(a line a word.); writeln(instruction+ +minl+ +maxr+ (+valuable)); writeln(---------------------------); for i:=1 to m do begin writeln(instruction input ,i, :); read(ch,opl,opr); if (ch=3)or(ch=4) then readln else readln(opx); case ch of 1,2:begin writeln(instruction output ,i,:); writeln(Nothing except the instruction is running over.);calc(1,1,n); end; 3,4:begin ans:=0; calc(1,1,n); writeln(instruction output ,i, :); writeln(ans); end; end; end; end.

 例子2:求线段树维护一个区间,支持如下操作:区间修改为同一个值(更改1),区间加一个数(更改2),区间乘一个数(更该3),区间和(运算1),区间最大值(运算2):、

对于例子1又多了一个区间乘法,所以就有5个lazy标记了...

所以这个down函数比较的长; 具体不解释了,就是在例子1上增加,看代码:

uses math;
const maxn=1000;
      inf=233333333;
type rec=record
add,mk,mp:longint;
end;
var  n,m,i,opx,opr,opl,ch,ans:longint;
     f,ff,a:array[1..maxn]of longint;
     s:array[1..maxn]of rec;
procedure build(x,l,r:longint);
var m:longint;
begin
 s[x].mk:=inf;
 s[x].add:=0;
 s[x].mp:=1;
 if l=r then begin
  ff[x]:=a[l];
  f[x]:=a[l];
//  s[x].mx:=a[l];
  exit;
 end;
 m:=(l+r)>>1;
 build(2*x,l,m);
 build(2*x+1,m+1,r);
 f[x]:=f[2*x]+f[2*x+1];
 ff[x]:=max(ff[2*x],ff[2*x+1]);
end;
procedure down(x,l,r,m,lson,rson:longint);
begin
 if s[x].mk<>inf then begin  //**
  s[lson].mk:=s[x].mk;
  s[rson].mk:=s[x].mk;
  s[lson].add:=0;
  s[rson].add:=0;
  s[lson].mp:=1;
  s[rson].mp:=1;
  f[lson]:=opx*(m-l+1);
  f[rson]:=opx*(r-m);
  ff[lson]:=opx;
  ff[rson]:=opx;
  s[x].mk:=inf;
  s[x].add:=0;
  s[x].mp:=1;
  exit;
 end;
  s[lson].mp:=s[lson].mp*s[x].mp;
  s[rson].mp:=s[rson].mp*s[x].mp;
  s[lson].add:=s[lson].add*s[x].mp;
  s[rson].add:=s[rson].add*s[x].mp;
  f[lson]:=f[lson]*s[x].mp;
  f[rson]:=f[rson]*s[x].mp;
  ff[lson]:=ff[lson]*s[x].mp;
  ff[rson]:=ff[lson]*s[x].mp;
  s[x].mp:=1;
  s[lson].mk:=inf;
  s[rson].mk:=inf;
  s[lson].add:=s[lson].add+s[x].add;
  s[rson].add:=s[rson].add+s[x].add;
  f[lson]:=f[lson]+s[x].add*(m-l+1);
  f[rson]:=f[rson]+s[x].add*(r-m);
  ff[lson]:=ff[lson]+s[x].add;
  ff[rson]:=ff[lson]+s[x].add;
  s[x].add:=0;
  s[x].mk:=inf;             //**
end;
procedure calc(x,l,r:longint);
var m:longint;
begin
 if  (opl<=l)and(opr>=r) then begin
  case ch of
   1:begin s[x].mk:=opx; s[x].add:=0; f[x]:=opx*(r-l+1); ff[x]:=opx; end;
   2:begin s[x].add:=s[x].add+opx; f[x]:=f[x]+opx*(r-l+1); ff[x]:=ff[x]+opx; end;
   3:begin ans:=ans+f[x]; end;  //f:sum
   4:begin ans:=max(ff[x],ans)end;  //ff:mk
   5:begin s[x].mp:=s[x].mp*opx; s[x].add:=s[x].add*opx; f[x]:=f[x]*opx; ff[x]:=ff[x]*opx; end;
  end;
  exit;
  end;
  m:=(l+r)>>1;
  if (s[x].mk<>inf)or(s[x].add>0)or(s[x].mp<>1)then down(x,l,r,m,2*x,2*x+1);
  if opl<=m then calc(2*x,l,m);
  if opr>m then calc(2*x+1,m+1,r);
  if (ch=1)or(ch=2) then begin
   f[x]:=f[2*x]+f[2*x+1];
   ff[x]:=max(ff[2*x],ff[2*x+1])
  end;
end;
begin
 writeln(input nodenum n=??); readln(n);
 writeln(input a num(n) sequence called a[]==??);
 for i:=1 to n do read(a[i]);
 write(the strat sequence a[]==);
 for i:=1 to n do write(a[i], );writeln;
 writeln(---------------------------);
 writeln(start to build XD tree.);
 writeln(---------------------------);
 build(1,1,n);
 writeln(---------------------------);
 writeln(XD tree is already built.);
 writeln(---------------------------);
 writeln(input your instructions number!); //build ok!
 readln(m); writeln(OK.);
 writeln(---------------------------);
 writeln(1=modify);
 writeln(2=ADD);
 writeln(3=question sum);
 writeln(4=max in the a[]);
 writeln(5=multiplication);
 writeln(a line a word.);
 writeln(instruction+ +minl+ +maxr+ (+valuable));
 writeln(---------------------------);
 for i:=1 to m do begin
  writeln(instruction input ,i, :);
  read(ch,opl,opr);
  if (ch=3)or(ch=4) then readln else readln(opx);
  case ch of
   1,2,5:begin calc(1,1,n); writeln(instruction output ,i,:); writeln(Nothing except the instruction is running over.); end;
   3,4:begin ans:=0; calc(1,1,n); writeln(instruction output ,i, :); writeln(ans); end;
  end;
 end;
end.

 

线段树初步