首页 > 代码库 > 红黑树 ------ luogu P3369 【模板】普通平衡树(Treap/SBT)
红黑树 ------ luogu P3369 【模板】普通平衡树(Treap/SBT)
二次联通门 : luogu P3369 【模板】普通平衡树(Treap/SBT)
近几天闲来无事。。。就把各种平衡树都写了一下。。。
下面是红黑树(Red Black Tree)
#include <cstdio> #define Max 100001 #define Red true #define Black false #define Inline __attri\ bute__( ( optimize( "-O2" ) ) ) Inline void read (int &now) { register char word = getchar (); bool temp = false; for (now = 0; word < ‘0‘ || word > ‘9‘; word = getchar ()) if (word == ‘-‘) temp = true; for (; word >= ‘0‘ && word <= ‘9‘; now = now * 10 + word - ‘0‘, word = getchar ()); if (temp) now = -now; } struct R_D { int key, size, weigth; bool color; R_D *father, *child[2]; Inline void Fill (const int &__key, const bool &__color, const int &z, register R_D *now) { this->key = __key; this->color = __color; this->size = this->weigth = z; this->father = this->child[0] = this->child[1] = now; } Inline void Up () { this->size = this->child[0]->size + this->child[1]->size + this->weigth; } Inline void Down () { for (R_D *now = this; now->size; now = now->father) now->size --; } Inline int Get_Pos (const int &now) const { return this->key == now ? -1 : now > this->key; } }; class Red_Black_Tree { private : int Top; R_D *Root, *null; R_D poor[Max], *Tail, *reuse[Max]; Inline R_D *New (const int &key) { register R_D *now = null; if (!Top) now = Tail ++; else now = reuse[-- Top]; now->Fill (key, Red, 1, null); return now; } Inline void Rotate (R_D *&now, const bool &pos) { register R_D *C = now->child[pos ^ 1]; now->child[pos ^ 1] = C->child[pos]; if (C->child[pos]->size) C->child[pos]->father = now; C->father = now->father; if (!now->father->size) Root = C; else now->father->child[now->father->child[0] != now] = C; C->child[pos] = now; now->father = C; C->size = now->size; now->Up (); } Inline void Insert_Fill (register R_D *&now) { for (; now->father->color; ) { R_D *Father = now->father, *Grand = Father->father; bool pos = Father == Grand->child[0]; R_D *Uncle = Grand->child[pos]; if (Uncle->color) { Father->color = Uncle->color = Black; Grand->color = Red; now = Grand; } else if (now == Father->child[pos]) Rotate (now = Father, pos ^ 1); else { Grand->color = Red; Father->color = Black; Rotate (Grand, pos); } } Root->color = Black; } Inline R_D *Find (R_D *now, int key) { for (; now->size && now->key != key; now = now->child[now->key < key]); return now; } Inline void Delete_Fill (register R_D *&now) { for (; now != Root && now->color == Black; ) { register bool pos = now == now->father->child[0]; R_D *Father = now->father, *Uncle = Father->child[pos]; if (Uncle->color == Red) { Uncle->color = Black; Father->color = Red; Rotate (now->father, pos ^ 1); Uncle = Father->child[pos]; } else if (Uncle->child[0]->color == Black && Uncle->child[1]->color == Black) { Uncle->color = Red; now = Father; } else { if (Uncle->child[pos]->color == Black) { Uncle->child[pos ^ 1]->color = Black; Uncle->color = Red; Rotate (Uncle, pos); Uncle = Father->child[pos]; } Uncle->color = Father->color; Uncle->child[pos]->color = Father->color = Black; Rotate (Father, pos ^ 1); break; } } now->color = Black; } public : Red_Black_Tree () { Top = 0; Tail = &poor[Top]; null = Tail ++; null->Fill (0, Black, 0, NULL); Root = null; } Inline void Insert (const int &key) { register R_D *now = Root, *Father = null; register int pos; for (; now->size; now = now->child[pos]) { now->size ++; Father = now; pos = now->Get_Pos (key); if (pos == -1) { now->weigth ++; return ; } } now = New (key); if (Father->size) Father->child[key > Father->key] = now; else Root = now; now->father = Father; this->Insert_Fill (now); } Inline void Delete (const int &key) { register R_D *res = Find (Root, key); if (!res->size) return ; if (res->weigth > 1) { res->weigth --; res->Down (); return ; } register R_D *Father = res, *now = null; if (res->child[0]->size && res->child[1]->size) for (Father = res->child[1]; Father->child[0]->size; Father = Father->child[0]); now = Father->child[!Father->child[0]->size]; now->father = Father->father; if (!Father->father->size) Root = now; else Father->father->child[Father->father->child[1] == Father] = now; if (res != Father) { res->key = Father->key; res->weigth = Father->weigth; } Father->father->Down (); for (R_D *Fuck = Father->father; Father->weigth > 1 && Fuck->size && Fuck != res; Fuck->size -= Father->weigth - 1, Fuck = Fuck->father); if (Father->color == Black) Delete_Fill (now); reuse[Top ++] = Father; } Inline int Get_kth_number (register int k) { register int res; register R_D *now = Root; for (; now->size; ) { res = now->child[0]->size; if (k <= res) now = now->child[0]; else if (res + 1 <= k && k <= res + now->weigth) break; else { k -= res + now->weigth; now = now->child[1]; } } return now->key; } Inline int Get_rank (const int &key) { register int res, cur = 0; register R_D *now = Root; for (; now->size; ) { res = now->child[0]->size; if (now->key == key) break; else if (now->key > key) now = now->child[0]; else { cur += res + now->weigth; now = now->child[1]; } } return cur + res + 1; } Inline int Find_Suffix (const int &key) { register int res = 0; for (R_D *now = Root; now->size; ) if (now->key > key) { res = now->key; now = now->child[0]; } else now = now->child[1]; return res; } Inline int Find_Prefix (const int &key) { register int res = 0; for (R_D *now = Root; now->size; ) if (now->key < key) { res = now->key; now = now->child[1]; } else now = now->child[0]; return res; } }; Red_Black_Tree Rbt; int N; int main (int argc, char *argv[]) { read (N); for (int type, x; N --; ) { read (type); read (x); switch (type) { case 1: Rbt.Insert (x); break; case 2: Rbt.Delete (x); break; case 3: printf ("%d\n", Rbt.Get_rank (x)); break; case 4: printf ("%d\n", Rbt.Get_kth_number (x)); break; case 5: printf ("%d\n", Rbt.Find_Prefix (x)); break; case 6: printf ("%d\n", Rbt.Find_Suffix (x)); break; } } return 0; }
红黑树 ------ luogu P3369 【模板】普通平衡树(Treap/SBT)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。