首页 > 代码库 > HDU 5155 Harry And Magic Box
HDU 5155 Harry And Magic Box
问题描述
有一天,哈利得到了一个神奇的盒子。这个盒子由n*m个格子组成,有一些格子里会有闪闪发光的宝石。但是盒子的顶部和底部都被神奇的魔法封印着,所以哈利没办法从顶部和底部看到盒子的内部。然而,盒子的四边都是透明的,哈利可以从盒子的四边看到里面的情况。哈利发现,这个神奇的盒子,从左边看过去,每一行都闪烁着光芒,从前面看过去,每一列也都闪烁着光芒。哈利想知道,盒子里的宝石有多少种分布情况。答案有可能很大,所以输出答案对1000000007取模。
输入描述
多组输入数据
每组数据一行,输入两个数n m表示盒子的大小,0≤n,m≤50
输出描述
每组数据输出一行,一个整数,代表方案数
思路:一种棋盘类型的DP,按行扩展,以为每一行都必须有棋子,所以枚举每一行填充的棋子的数目,
dp[i][j]表示已扩展到第i行,其中已有j列有棋子的方案数。
则 dp[i+1][j+t] += dp[i][j] * C[m-j][t] * C[j][k-t] (k为第i+1行填充棋子数,t为新增列数)
代码:
#include<iostream> #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int mod = 1000000007; const int N = 100+10; typedef long long ll; ll C[N][N]; ll dp[N][N]; int n,m; void init() { memset(C,0,sizeof(C)); for(int i=0;i<=60;i++) C[i][0]=1; for(int i=1;i<=50;i++) for(int j=1;j<=i;j++) C[i][j] = (C[i-1][j] + C[i-1][j-1]) % mod; } ll solve() { memset(dp,0,sizeof(dp)); for(int i=1;i<=m;i++) { dp[1][i] = C[m][i]; } for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) for(int k=1;k<=m;k++) for(int t=0;t<=k&&t<=m-j;t++) dp[i+1][j+t] = (dp[i+1][j+t] + ((dp[i][j]*C[m-j][t])%mod*C[j][k-t])%mod )%mod; return dp[n][m]; } int main() { init(); while(scanf("%d%d",&n,&m)!=EOF) { printf("%d\n",solve()); } return 0; }
HDU 5155 Harry And Magic Box
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。